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Executive summary 

Water science studies to assess the potential impacts of possible onshore gas developments on Victoria’s 

water resources are being undertaken by government. The Geological Survey of Victoria (GSV) has 

reviewed the prospectivity of all gas types in the Gippsland Basin to inform the preparation of an impact 

assessment on water resources. This review of gas prospectivity of the Gippsland region includes the 

onshore portion of the Gippsland Basin and South Gippsland. The review draws on the current knowledge of 

the geology and resource distribution discovered to date through exploration activity.  

There are two sedimentary sequences that are prospective for gas in the onshore Gippsland Basin and one 

in South Gippsland. The Early Cretaceous Strzelecki Group across the Gippsland region is potentially a 

target for all gas types: conventional, tight, shale and coal seam gas. The overlying Latrobe Group in the 

onshore Gippsland Basin has potential for conventional gas and coal seam gas. 

Conventional gas 
No conventional gas accumulations have been found to date in the onshore Gippsland region. Explorers 

have searched for conventional gas onshore, targeting the top of the Latrobe Group, the unit that hosts much 

of the oil and gas offshore. Many conventional structural traps have been tested without success. Units 

deeper within the Latrobe Group (known as the intra-Latrobe Group) have been found to contain oil and gas 

offshore and it has been suggested that these units might be prospective in the onshore Gippsland Basin but 

little work has been done to specifically target these units onshore.  

The Latrobe Group attains its greatest onshore thickness near the central Gippsland coast in the Seaspray 

Depression, and therefore could be considered the most likely area to find conventional gas. Better mapping 

of the intra-Latrobe Group units and associated rock properties could help to assess conventional gas 

prospectivity in the onshore Gippsland Basin. 

Previous explorers have also searched for conventional gas in coarse sandstone units at the base of the 

Strzelecki Group. These sandstones belong to the Tyers River Subgroup. The distribution of this unit is not 

well known. It was intersected by the well Megascolides-1, drilled in 2004, but was not present in 

Megascolides-2 just over a kilometre away, illustrating the difficulty in targeting this conventional prospect. 

Tight gas 
The Strzelecki Group, found across Gippsland, is the primary target for tight gas. Wells penetrating the top of 

the unit are common but few penetrate a significant thickness, so data is sparse. Gas could be irregularly 

distributed throughout the formation or found trapped in discrete areas. The Wombat/Trifon/Gangell tight gas 

fields could be an example of the latter. The fields are estimated by the permit holder to host 1.7 Trillion 

cubic feet (Tcf) of gas. The gas is found in tight rocks within and beneath geological structures in the 

Seaspray Depression. Whether gas is distributed throughout the Strzelecki Group in quantities that may 

prove to be commercial is unknown.  

Shale gas 
Across Gippsland, the distribution of shales as potential shale gas reservoirs is unknown. Shaley units have 

been encountered in the few wells that have intersected the Strzelecki Group in South Gippsland, and in the 

onshore Gippsland Basin. It is therefore possible that shale gas reservoirs exist within the tight Strzelecki 

Group sequence. There are geological differences between the Strzelecki Group and the gas producing 
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shale formations in the United States and elsewhere that suggests the Strzelecki Group is not highly 

prospective for shale gas but lack of data prevents any clear statement. 

Coal seam gas 
Both black and brown coal seams are found in the rocks of the Gippsland region. The black coal seams 

found in South Gippsland are part of the Strzelecki Group. The brown coals of the Gippsland Basin and 

Latrobe Valley are younger in age and are named, from oldest to youngest, the Traralgon, Morwell and 

Yallourn seams. Both have been the focus of past coal seam gas exploration in the region. There have  

been no discoveries of coal seam gas to date and knowledge of the resource potential in Gippsland is 

extremely limited.  

The prospectivity of the Strzelecki Group black coals appears poor on the basis of the current information. In 

the only test for coal seam gas in 2004, the black coal seams encountered in the Megascolides-1 well were 

discontinuous and thin and the gas readings were low. There is no data available for most of the area where 

black coals may be found, and evaluation of the prospectivity is therefore difficult.  

The current tenement holder over the onshore Gippsland Basin has estimated that the brown coals may host  

3.7 Tcf of gas. To date there have been no proper tests to establish whether there is gas trapped in the coal and 

whether the gas could be extracted if it is there. As there is a large volume of brown coal present, large 

prospective resources (i.e. undiscovered) of gas can be calculated on the basis of assumed gas content. If it was 

found that actual gas content or producibility was low, then the prospectivity would be significantly reduced.  

Hypothetical development scenarios  
As part of this review, hypothetical scenarios for the potential development of gas in the onshore Gippsland 

Basin and South Gippsland were devised. For there to be a chance of development, the prospective rock 

unit must be present, and so the presence or absence of the geological formation of interest was the first 

consideration in the development of scenarios. Secondary considerations included information from 

specialist studies indicating areas that have favourable rock characteristics within a prospective formation, 

and areas where there has been recent exploration. 

Hypothetical development scenarios for tight gas were focussed on the Seaspray Depression where several 

tight gas fields and prospects have been identified. The scenarios included tight and shale gas, as shale-like 

units are also found in the Strzelecki Group. For coal seam gas from brown coal, various scenarios were 

envisaged based on the location of the coal resource, its depth and the current exploration licence over the area. 

Scenarios for conventional gas were not defined because of the large degree of geological uncertainty 

associated with potential conventional gas formations and the lack of past success to provide guidance. A 

potential scenario for coal seam gas from black coal in South Gippsland was also excluded  

for similar reasons. 

There is a significant degree of uncertainty associated with both the prospectivity for gas in the Gippsland 

region and potential development scenarios. The uncertainty is primarily related to the geology. The current 

understanding and delineation of target geological formations across the Gippsland region is imperfect. 

There are also a number of very specific characteristics that a geological unit must exhibit to be considered 

truly prospective for gas. To varying degrees, for all gas types, these characteristics are poorly understood 

across the onshore Gippsland region. 
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 Introduction 1

Water science studies have been undertaken by government to assess the potential impacts of possible 

onshore gas developments on Victoria’s water resources. The Department of Environment, Land, Water and 

Planning is leading the water studies with technical assistance from the Geological Survey of Victoria (GSV). 

GSV is investigating all types of onshore gas - tight, shale, coal seam and conventional gas, through a 

review of the prospectivity of each of these gas types. This prospectivity review was used to inform the 

preparation of an impact assessment on water resources. 

This report describes past and current exploration efforts in the onshore Gippsland Basin and South 

Gippsland. The geology of the Gippsland region is summarised to provide a geological context for the 

subsequent discussion. The prospectivity of each gas type is reviewed on the basis of current available 

published and unpublished data. In particular, the review focuses on where future development of each gas 

type would be more prospective, based on current knowledge of the geology and resource distribution 

discovered to date through exploration activity. 

This review is not a resource assessment. In Victoria, little data pertaining to unconventional gas potential is 

available. The data that has been gathered to assess onshore conventional gas has been used to inform this 

review. The evaluation of an unconventional resource requires knowledge of a greater number of geological 

and petroleum-related parameters across larger areas than for conventional gas resources. As such, the 

current data is limited in its application. 

 Gas types 1.1
Gas is found in conventional or unconventional reservoirs; gas in unconventional reservoirs can be 

described as tight, shale or coal seam gas (Figure 1.1). 

The majority of oil and gas produced across the globe comes from conventional reservoirs. This is also the 

case in Victoria, where all gas production to date is from conventional reservoirs. The majority of gas 

discovered and produced to date in Victoria has been from the offshore portion of the Gippsland Basin, with 

smaller but significant volumes from the offshore Otway Basin. Relatively smaller gas fields were discovered 

and produced between 1986 and 2006 in the onshore Otway Basin. 
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Figure 1.1 Gas types. 

Conventional gas reservoirs are commonly porous and permeable rocks such as sandstones or limestones. 

Impermeable rocks, such as claystones, lie directly above the reservoir and are known as a seal or cap-rock. 

The gas is trapped in the reservoir and under the seal in geological structures. Geological structures are like 

an inverted dish, with the gas held underneath. A gas well drilled into the geological structure will intersect 

the porous gas reservoir and, when present, gas will flow into the well. 

Tight, shale and coal seam gas are termed unconventional gas types. These differ from conventional gas in 

that the gas is trapped at or near the source, which may also act as the gas reservoir. In the case of tight 

gas, the gas is produced from relatively low permeability and low porosity sedimentary reservoirs. The lack of 

permeability of the rock prevents gas from migrating, so it is trapped in the tight rock formation. A similar 

principle applies to shale gas, where the gas is sourced from and trapped in, very fine-grained sedimentary 

rocks that have low porosity and permeability and are organic-rich. The gas is held on organic matter in the 

rock, in tiny pores between grains, and in any fractures present in the rock. In the case of coal seam gas 

(also known as coal bed methane), naturally occurring methane in the coal seams is held on the coal 

surfaces by water pressure and may also exist in the gaps and cracks in the coal seams.  

Shale gas has been produced in the United States since 1820 (e.g. Martin et al., 2010) and coal seam gas 

production in Queensland has grown from the first small-scale commercial production 18 years ago at Moura 

(Slater & Baker, 2012). In the United States, it is only in the last few years that decades of experience and 

knowledge gained from the development of individual shale gas plays, and advancements in well completion 

technologies, have led to the growth of the industry. The rising price of the commodity has also contributed 

to the commercial viability of gas development projects that would not have been possible in the past. 

The difference between conventional gas production and the unconventional gas types (tight, shale and coal 

seam gas) is that for most conventional wells, gas will flow from the reservoir into the well and to the surface 

infrastructure without assistance, whereas for the other gas types, additional technologies are required to 

release the gas. For instance, gas may not flow unless the rocks are fractured to create artificial permeability 

http://naturalgasinfo.vic.gov.au/natural-gas/types-of-natural-gas/permeability
http://naturalgasinfo.vic.gov.au/natural-gas/types-of-natural-gas/porosity
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in the formation to release the trapped gas. For coal seam gas extraction, water must be drawn away from 

the coal seam by depressurising the coal to release the gas into the well. 

Not all unconventional gas types require fracturing or are suitable for fracturing, and some conventional gas 

reservoirs are artificially fractured to maintain or enhance production. For instance, more than 700 

conventional wells in the Cooper Basin have been fracture-stimulated to enhance hydrocarbon recovery in 

South Australia since 1969 (Goldstein et al., 2012). 

 Gas resource estimation and reporting 1.2
Australian companies, particularly those with reporting obligations under ASX listing rules, report their 

estimates of petroleum (oil or gas) assets according to a system developed by the Society of Petroleum 

Engineers (SPE), known as the Petroleum Resource Management System 2007 or PRMS. The following is 

summarised from the PRMS (SPE, 2007). 

There are three categories of resource (Figure 1.2), determined by the progress from untested concept 

toward commercial production, and each category may be further defined by the degree of certainty by which 

it is known.  

The lowest category is Prospective Resource: an estimate from geological data of economically 

recoverable volumes, as yet undiscovered. Because many variables are poorly understood the range 

between a high and low estimate of a prospective resource will be large, and crucially, the actual presence of 

recoverable petroleum at all is yet to be tested by drilling.  

Once a discovery of recoverable petroleum is made, the resource, or part of it, may be described as a 

Contingent Resource: the volume that may be commercially recoverable once certain contingencies are 

satisfied. The contingencies may include commercial, legal, logistical or technical. 

The term Reserve is applied only where commerciality can be shown, and is defined more rigorously than 

resources. Reserves are volumes anticipated to be commercially recoverable by a development project from 

a given date forward under defined conditions. There must be a high confidence in the commercial 

producibility of the reservoir, as supported by actual production or formation tests. Reserves must be 

discovered, recoverable, commercial, and remaining, based on the development project(s) applied. The 

specification of the development project is important: different methods of development (e.g. well spacings) 

may allow more or less of the petroleum in place to be commercially produced, thus each development plan 

has a different reserve even though the geology is the same.  

The critical factors for elevation of a resource from prospective to contingent and from contingent to  

Reserve are thus discovery and commerciality. A discovery is where one or several exploratory wells  

have established, through testing, sampling, and/or logging, the existence of a significant quantity of 

potentially moveable hydrocarbons. Shows and indications are not discoveries, whereas a flow or recovery 

in volume may be.  

Commerciality requires demonstrated evidence that commercial flow rates are attainable, that production 

and transport facilities to a known market are available, that legal, contractual and commercial arrangements 

and internal approvals are in place, that project economics meet investment criteria and that the controlling 

entity is proceeding into commercial production or has a clear intention to do so. In summary, an undrilled 

prospect may be quantified with a prospective resource, if successful and whilst under evaluation it may 

contain a contingent resource, and once all hurdles toward commercial production are cleared it may be 

considered a reserve. 
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As the exact volume of oil or gas that will ultimately be economically recoverable over the life of a project is 

unknowable a range of values can be reported. When a single value is reported it should be accompanied by 

an indication of where the value sits in the range. This range is expressed in terms such as ‘low’, ‘high’ or 

‘most-likely estimate’, or as ‘proven’, ‘probable’ or ‘possible’, or in statistical terms ‘P10’, ‘P50’ and ‘P90’.  

The statistical terms indicate that (for example) there is a 90% chance that the volume will exceed the P90 

figure, whereas there is only a 10% chance that the volume will exceed the P10 figure. In reporting reserves 

as a single number for simplicity, most entities report a 2P or PP value (proven plus the probable), which is 

the most likely or median value. 

 

Figure 1.2 Petroleum Resource Management System Resources Classification Framework  

(after SPE, 2007). 

In all cases, the unrecoverable portion is not part of the resource or the reserve. Terms such as Petroleum 

Initially In Place (PIIP) are used to describe the volume in the ground.  

Public reports of volumes discovered or anticipated may not state whether these are recoverable or in place, 

and categories or certainty values may have been used without due regard to the formal definitions. Care 

and understanding of the basis of the resource estimation method is essential.  

Using the categories defined here, Victoria has no reserves of unconventional hydrocarbons.  
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 Gas exploration in Gippsland 1.3
The Gippsland Basin, which has both onshore and offshore elements, is considered one of Australia's most 

prolific hydrocarbon provinces with the offshore area hosting several oil and gas fields. In the offshore 

Gippsland Basin to date, 26,089 PJ of liquid hydrocarbons (crude oil, condensate and naturally occurring 

LPG resources) and 9120 PJ of gas have been produced (Geoscience Australia & BREE, 2014). It is 

estimated that 1396 PJ of crude oil, 959 PJ of condensate, 609 PJ of LPG and 9253 PJ of conventional gas 

remains in the Gippsland Basin (Geoscience Australia & BREE, 2014).
1
 

In the onshore Gippsland Basin, there is a long history of petroleum exploration, with 197 wells drilled since 

1886. The majority of these wells targeted petroleum in the same geological formations as those found to 

host oil and gas in the offshore area. Although numerous oil and gas shows (readings) were recorded, no 

conventional discoveries were made. The discovery and recovery of relatively small volumes of oil at Lakes 

Entrance around the 1920s and 1930s would be considered the most successful historical petroleum 

encounter to date in the onshore area.  

Over about the last 15 years, in their exploration of the onshore Gippsland Basin, Lakes Oil NL have 

targeted gas and oil in the sedimentary sequence beneath the offshore hydrocarbon-bearing units. Lakes Oil 

has defined three gas accumulations known as the Wombat, Trifon and Gangell fields. The gas is 

accumulated in and below relatively tight (impermeable) reservoirs within structural closures. Lakes Oil hold 

a retention lease over the fields in a geologically defined area known as the Seaspray Depression. Another 

company, Icon Energy holds an exploration permit in an adjoining area that might host tight gas. 

In 2001 companies began taking up exploration licences for coal seam gas (also called coal bed methane) 

across the onshore Gippsland Basin and the South Gippsland area. Large volumes of brown coal underlie 

the onshore Gippsland Basin in thick (i.e. > 20 m) relatively continuous seams that companies such as IER 

(Ignite Energy Resources) have targeted. Across South Gippsland, areas that are host to thinner (i.e. <1 m) 

and less continuous black coal seams are covered by a larger number of smaller exploration licence areas, 

with companies also targeting coal seam gas. 

  

                                                      

1
 The contained energy within gas and oil is measured in joules or kilojoules. Large volumes in gas reservoirs are described in 

petajoules (PJ). Relating  the contained energy to the physical volume in trillion cubic feet or billion cubic meters requires knowledge of 

the chemical makeup of the gases present, as different hydrocarbon species (e.g. methane, ethane, propane), contain different energies 

per unit volume, and some non-flammable gas such as nitrogen or carbon dioxide may be present in small amounts. .. 
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 Study area 1.4
The study area defined for this review is based on the occurrence of potential gas-bearing units. The area 

includes both the South Gippsland region and the onshore portion of the Gippsland Basin (Figure 1.3) 

because of the geology, exploration history and current exploration interests across both areas. The 

distinction is made between the two areas because the geology, and hence the types of sedimentary rocks 

found there, are different. This in turn affects the gas type that might be found.  

Given the geology, exploration history and current exploration interests across both the onshore Gippsland 

Basin and South Gippsland, the study area for this review covers these areas. 

 

Figure 1.3 Location map of South Gippsland and onshore Gippsland Basin. 
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Figure 1.4 South Gippsland region structural elements. (After Holdgate, 2003). 

In South Gippsland, the sandstones and mudstones of the Strzelecki Group underlie the entire region and 

are most prominent in outcrop as the topographic highs of the Strzelecki Ranges. To the northeast of the 

ranges, the sediments of the Latrobe Valley overlie the Strzelecki Group. Palaeozoic basement highs such 

as the Wonthaggi Basement Ridge and the Tyers Basement Ridge have a northeast to southwest strike 

orientation that is consistent with that of mapped Palaeozoic outcrop in the region (Figure 1.4). The 

basement highs, which are notable as shallow black coal deposits, are located on or adjacent to these 

structures. Jenkin (1971) provided the most comprehensive identification and naming of physiographic 

features and structural elements to date. 

Most of the Gippsland Basin lies offshore under Bass Strait but there is also an onshore component. All the 

commercially produced gas from the Gippsland Basin has come from offshore. The location, size and shape 

of the oil (green) and gas (red) fields are shown in Figure 1.5. Both the onshore and offshore Gippsland 

Basin are divided into distinct areas based on the underlying structure of the geological formations. In most 

cases the areas are delineated by faults or fault systems. 

The Seaspray Depression (Hocking, 1976) is of particular interest because prospective tight and coal seam 

gas resources have been identified within this area. 
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Figure 1.5 Onshore and offshore elements of the Gippsland Basin.  
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 Regional geology 2

 Tectonic setting 2.1
The evolution of the geology of the Gippsland region is recorded in three major depositional sequences 

ranging from Early Cretaceous to Recent in age. The overall tectonic control on the sedimentary systems of 

the basin is imprinted by a series of basin-wide angular unconformities. The Gippsland Basin is an east-west 

trending feature that formed as a consequence of the break-up of Gondwana in the Mesozoic (Rahmanian et 

al. 1990, Willcox et al., 1992, 2001; Norvick & Smith, 2001; Norvick et al., 2001). 

As part of the Early Cretaceous rift system that developed during the initial separation of Australia and 

Antarctica, the early architecture of the Gippsland Basin featured a rift valley complex composed of multiple 

northeast – southwest trending half-grabens into which the thick sequence of volcanoclastic Strzelecki Group 

sediments was deposited (Rahmanian et al., 1990). The older Palaeozoic basement ridges were buried 

during these earliest structural events (Constantine, 1992).  

With the separation of Australia from Antarctica at the end of the Early Cretaceous (around 95 million years 

ago), the development of the Otway Unconformity in Gippsland is associated with uplift around the margins 

of the old rift and the increased prominence of the major ridges separating the Otway, Gippsland and Bass 

basins (Rahmanian et al., 1990). These changes in tectonic regime resulted in a more confined area of 

deposition in the Gippsland Basin and a change in provenance from volcanoclastic deposition to the more 

quartoze-rich sediments of the overlying Latrobe Group. 

A second phase of rifting in the Late Cretaceous, associated principally with Tasman Sea spreading 

produced a classic extensional basin geometry comprising a depocentre (the Central Deep) flanked by 

platforms and terraces to the north and south (Rahmanian et al., 1990). The Central Deep is bound by the 

Darriman fault system (Maung, 1989) to the south and the Rosedale fault system (e.g. Hocking, 1976) to the 

north. The Foster fault system (Milliken, 1968) separates the Southern Terrace from the Southern Platform, 

and the Lake Wellington fault system (e.g. Stainforth, 1984) separates the Northern Terrace from the 

Northern Platform. These offshore structural elements extend onshore; the Alberton, Seaspray and Lake 

Wellington (including the Latrobe Valley) depressions and the Lakes Entrance Platform are defined (i.e. 

Thomas and Baragwanath, 1949, Hocking and Taylor, 1964, Hocking, 1976). The Seaspray and Lake 

Wellington Depressions are separated by the Baragwanath Anticline, an uplifted structural block, with  

faulted margins. 

During the Late Cretaceous the second phase of rifting provided the accommodation space within which the 

earliest mainly terrestrial Latrobe Group sediments were deposited. Breakup along the eastern margin of 

Australia at around 80Ma in the Campanian left the Gippsland Basin as a failed rift. A peak in volcanism is 

recorded around this time – the Campanian volcanics. From the Latest Cretaceous and into the Eocene, the 

change from a fault controlled to marginal sag regime is recorded in the change in sedimentation. Marine 

influence increased and more marginal environments were common (Rahmanian et al., 1990). During the 

Eocene and up to the early Oligocene, the coal seams of the Traralgon Formation formed in swamps 

extending into the subsiding Latrobe Valley Depression, around the north of the Balook Block of the South 

Gippsland highlands (Gloe, 1984).  

From the latest Eocene, compression created the prominent northeast to southwest-trending anticlines which 

form the main hydrocarbon traps offshore (e.g. Smith, 1988). Uplift associated with the compression created 

an erosional surface that is seen across the top of the Latrobe Group; although that unconformity is not 

basin-wide (Hoffman et al., 2012). 
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During the Oligocene, slow basin subsidence, warmer ocean temperatures and a change in ocean currents 

resulted in widespread carbonate deposition across Australia’s southern margin (Holdgate & Gallagher, 

1997). During the Oligocene and into the late Miocene continuing subsidence in the Latrobe Valley 

Depression and protection from marine incursion provided by a narrow but continuous barrier sand complex 

resulted in the formation of the thick coal seams of the Morwell and Yallourn formations in coal swamps 

(Gloe, 1984). Tectonism has continued to overprint the basin as documented by localised uplift during the 

Neogene (Dickinson et al, 2001).  

 Stratigraphy 2.2
The mostly sedimentary rock units found both at the surface and in the subsurface in Gippsland have been 

described to various extents, dated using fossil evidence, and for the most part, given geological names. The 

description of geological units in this context is known as stratigraphy. Since a stratigraphic framework for the 

Gippsland Basin was established, there have been numerous changes to the nomenclature. The current 

framework is a product of those various changes, and many challenges remain to reconcile the onshore and 

offshore stratigraphy and some relationships between shallow onshore units. However, three broad 

stratigraphic successions across Gippsland (based on lithological variations) are generally recognised. 

These stratigraphic groups comprise (a) the Strzelecki Group, a thick sequence of non-marine, 

volcanoclastic-rich sediments; (b) the Latrobe Group, a sequence of marine and non-marine siliciclastics that 

host all the known hydrocarbon occurrences in the offshore Gippsland Basin; and (c) the Seaspray Group, a 

carbonate-dominated succession that is the regional seal to the top Latrobe Group oil and gas 

accumulations (Figure 2.1).  

2.2.1 Strzelecki Group 

The Strzelecki Group represents non-marine syn-rift sedimentation and unconformably overlies Palaeozoic 

igneous and folded sedimentary rocks. The Strzelecki Group has strong affinities with the Otway Group in 

the Otway Basin (Duddy & Green, 1992), and includes a basal unit of alluvial fan conglomerates and fluvial 

coarse quartzose sandstones of Neocomian age (the Tyers River Subgroup). The remainder of the 

Strzelecki Group is an undifferentiated sequence of interbedded lithic, volcanoclastic sandstones and 

mudstones, including several coal-rich horizons, all of which accumulated under a fluvial depositional regime 

(Holdgate & McNicol, 1992; Tosolini et al., 1999). The total thickness of the Strzelecki Group is ill-defined; it 

may be up to 3000 m in places (Mehin & Bock, 1998; Duddy, 2003) but may also reach 6000 m (Chiupka, 

1996). Offshore, the group is regarded by the industry as ‘economic basement’, although considered to have 

potential for hydrocarbon generation and accumulation, in particular in the onshore part of the basin (Mehin 

& Bock, 1998), where the tight gas accumulations of the North Seaspray and Gangell fields are reservoired 

in the Strzelecki Group. The burial history and diagenetic alteration of the volcanoclastic detritus that 

comprises the majority of the Strzelecki Group sediments has resulted in generally low permeability 

characteristics.  

Tyers River Subgroup 

The Tyers River Subgroup has been identified as a potential hydrocarbon reservoir, sealed by the overlying 

tight Strzelecki volcanoclastic sequence (Chiupka, 1996). This is the basal unit of the Strzelecki Group, and 

comprises the Tyers Conglomerate, which is a quartz-rich fluvial conglomerate derived from the Palaeozoic 

basement present around the northern margin of the Gippsland (Tosolini et al., 1999), overlain by the 

quartzose Rintoul’s Creek Sandstone. These units were deposited around the basin margins and against the 

footwalls of the half grabens that developed during the initial rifting phase. The Rintoul’s Creek Sandstone is 

the lateral equivalent of the Pretty Hill Formation in the Otway Basin. Analysis of the unit suggests that it has 

limited lateral distribution, and thins rapidly towards the basin centre (Tosolini et al., 1999). 
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Figure 2.1 Gippsland Basin stratigraphy. Left to right in each column = west to east. (Compiled from 

Bernecker & Partridge, 2001; Chiupka, 1996; Gallagher & Holdgate, 1996; Holdgate & Gallagher, 2003; 

Partridge, 2006a; Partridge, 2006b & Tosolini et al., 1999).  
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2.2.2 Latrobe Group 

The Latrobe Group hosts all currently known hydrocarbons in the offshore part of the basin. Four subgroups 

are discriminated and each consists of formations that are distinguished according to their main depositional 

facies assemblages (Figure 2.1).  

Emperor Subgroup 

The Emperor Subgroup is the oldest depositional unit of the Latrobe Group and is separated from the 

underlying Strzelecki Group by the Otway Unconformity. Large amounts of erosional material were delivered 

to the evolving rift-valley, in which one or several deep lakes emerged as the depocentre. The Emperor 

Subgroup (Bernecker & Partridge, 2001) has been intersected around the basin margins only in the vicinity 

of the bounding faults of the Northern and Southern terraces. Onshore, this subgroup is intersected in 

several wells close to the coast in the Seaspray Depression only.  

The Emperor Subgroup comprises coarse-grained alluvial fan/plain as well as lacustrine facies associations, 

and comprises four formations, of which only the lacustrine Kipper Shale (Lowry & Longley, 1991) and the 

fluvial-deltaic Curlip Formation (Bernecker & Partridge, 2001) have been intersected in the onshore 

Gippsland Basin. The Kipper Shale is dominated by mudstones with intercalated fine-grained to medium-

grained sandstones (Marshall & Partridge, 1986; Marshall, 1989; Lowry & Longley, 1991) and is a potential 

sealing facies. The Curlip Formation (Bernecker & Partridge, 2001) consists of sandstones and 

conglomerates that are interbedded with thin shales and minor coals. The formation overlies and interfingers 

with the Kipper Shale; the top marked by the basin-wide Longtom Unconformity that terminates Emperor 

Subgroup deposition.  

Golden Beach Subgroup 

The Golden Beach Subgroup has been recognised by Chiupka (1996) as a potential hydrocarbon reservoir. 

It is essentially confined to the Central Deep, including the onshore Seaspray Depression, where it is 

represented by the fluvial-deltaic Chimaera Formation (Bernecker & Partridge, 2001). The Chimaera 

Formation is a non-marine succession that comprises coarse-grained alluvial/fluvial sediments as well as 

fine-grained floodplain deposits including some coals (Bernecker & Partridge, 2001), and can exceed 300 m 

in thickness. The Chimaera Formation has been intersected in wells close to the coast and near the 

Rosedale Fault System in the Seaspray Depression, but is absent from the Lake Wellington Depression. The 

Golden Beach Subgroup also contains several volcanic horizons that are possibly intersected in the 

Darriman-1 well in the Seaspray Depression. These volcanics terminate the Golden Beach Subgroup and 

signal another depositional hiatus represented by the Seahorse Unconformity (Bernecker & Partridge, 2001).  

Halibut Subgroup 

The Halibut Subgroup hosts the bulk of the hydrocarbons in the Gippsland Basin and comprises five 

formations – the Volador, Mackerel, Kingfish and Barracouta formations and the Kate Shale - that are 

distinguished according to their dominant depositional facies regimes. These formations document the 

changes from non-marine to marine environments in a west-east or onshore-offshore direction, and are 

outlined by Bernecker et al. (2003). Two of these formations are intersected in the onshore basin, the 

Barracouta Formation (revised and formalised by Hocking, 1976) which is characterised by fluvial siltstones, 

sandstones and minor coals and was deposited on an upper coastal plain. The Kingfish Formation is 

intersected only in Golden Beach West-1, and in Golden Beach-1A in the 3 nautical mile zone immediately 

offshore, and is a typical lower coastal plain, coal-rich facies.  

Cobia Subgroup 

The middle Eocene to early Oligocene Cobia Subgroup (formerly the Cobia Group of Thompson, 1986) 

comprises the coal-bearing, lower coastal plain facies of the Burong Formation (Partridge, 1999), which is 

reasonably well-developed across the eastern part of the onshore Gippsland Basin and the shallow to open 

marine Gurnard Formation (James & Evans, 1971). The Gurnard Formation is a condensed section 
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composed of fine-grained to medium-grained glauconitic siliciclastics and acts as a top seal for some of the 

giant hydrocarbon fields offshore (as shown by Daniel, 2005). Deposition of the Cobia Subgroup ceased 

during the early Oligocene, as a consequence of a marked decline in sediment supply. Large areas of the 

central basin were left with starved or condensed sections, which led to the development of what is 

traditionally known as the ‘Latrobe Unconformity’ (Partridge, 1999). On seismic sections, this surface is 

expressed by a prominent reflector marking the boundary between siliciclastic and calcareous rocks, which 

from biostratigraphic data, should be considered a composite of several, separate erosional events 

(Partridge, 1999).  

2.2.3 Seaspray Group 

The Seaspray Group consists of calcareous sediments that unconformably overlie the siliciclastics of the 

Latrobe Group and includes the basal Lakes Entrance Formation and overlying Gippsland Limestone. 

Onshore, the Cunninghame Greenstone Member, Giffard Sandstone Member, Colquhoun Sandstone 

Member, Seacombe Marl and the Metung Marl are identified as constituent units of the Lakes Entrance 

Formation (Hocking, 1976). The shift from siliciclastic to cool-water carbonate deposition in the Gippsland 

Basin occurred in the early Oligocene, as a consequence of a change in ocean circulation along the 

southern Australian margin (Holdgate & Gallagher, 1997). Since then, cool-water carbonate production 

resulted in progradation of the shelf edge. Onshore, in the Lake Wellington and Seaspray Depressions, a 

marine sequence of middle Miocene to Pliocene aged sediments rests unconformably on the Gippsland 

Limestone. This sequence is comprised of the Wuk Wuk Marl, Bairnsdale Limestone, Tambo River 

Formation and Jemmys Point Formation.  

The Seaspray Group, in particular the Lakes Entrance Formation, is considered a basin-wide, high quality 

regional top seal. The Lakes Entrance Formation is the lowermost unit of the Seaspray Group and is 

composed predominantly of smectite-rich calcareous mudstones and claystones, with some variation in 

composition across the basin (Bernecker et al., 1997, Hocking, 1976, Holdgate & Gallagher, 1997). The 

Lakes Entrance Formation is considered to provide excellent top seal containment offshore and in parts of 

the onshore Gippsland Basin (O’Brien et al., 2008; Goldie Divko et al., 2010). Onshore, to the west of the 

current coastline, the Lakes Entrance Formation interfingers with the Balook Formation, a barrier sand 

system that laterally separates the marine Seaspray Group carbonates from the back-barrier swamp and 

coastal plain Latrobe Valley Coal Measures. The Balook Formation is generally limited in lateral extent but 

contains tongues that extend up to 30 km into the coal measures (Holdgate & Gallagher, 2003). It is 

significant as it marks the edge of the sealing facies of the marine Lakes Entrance Formation.  

Latrobe Valley Subgroup 

The Latrobe Valley Subgroup (formerly known as the Latrobe Valley Group of Hocking, 1972) has been 

restricted to the sequence in the Latrobe Valley Depression and demoted to subgroup status (Partridge et 

al., 2013). The main coal-bearing formations of the Latrobe Valley are identified in this sequence as are the 

Traralgon, Morwell and Yallourn, formations (Holdgate & Gallagher, 1997; Holdgate & Clarke, 2000). In the 

Lake Wellington, Seaspray and Alberton Depressions, and around the margins of the Baragwanath Anticline, 

the Traralgon Formation overlies tuffs and basalts of the Carrajung Volcanics. Underlying the volcanics, 

there is a sequence of fluvial/alluvial conglomerates, sandstones, thin coals and shales of the Yarram 

Formation, which is equivalent in age to the Halibut Subgroup offshore. 

Sale Subgroup 

The Sale Group (Hocking, 1972) included the continental coarse clastics deposited in the early Pliocene. 

This included the lower Boisdale Formation and the younger Haunted Hill Formation. The Sale Group has 

since been restricted by Partridge et al. (2013) to the Latrobe Valley Depression and demoted to Subgroup 

status, with the Haunted Hill Formation as the only formation recognised in the Latrobe Valley and Seaspray 

depressions. 
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 Previous exploration 3

 Oil and gas 3.1
Exploration for oil and gas in Gippsland began in 1886 when bores were sunk with the object being to strike 

oil (Ower, 1921). During the late 1800s both the government and private industry embarked on drilling 

programs to locate gold, minerals, coal and water. By the 1920s, boreholes drilled for the specific purpose of 

finding oil and gas in the Lakes Entrance area (Lake Bunga, Boola Boola and Colquhoun) had limited 

success. Mineral oil had been found in an area around Lakes Entrance in a glauconitic sandstone unit about 

350 to 400 metres below the surface. Forty-five bores (both private and government) had intersected the oil-

bearing unit by 1934 (Mines Department, 1935). Over a period of four years, production totalled around 

80000 gallons of heavy oil of “asphaltic base” (Mines Department, 1935). As a result, the prospect of finding 

further oil in the region was considered promising and a submission to Parliament was prepared to liberalise 

conditions for granting oil leases and to encourage prospecting for oil in the state. By the 1950s, Woodside 

Lakes Entrance Oil Company held permits on the Victorian south-east coast, where they drilled a number of 

exploration wells with no commercial success (Wilkinson, 1988). 

During the 1960s exploration was successful in Queensland, Central Australia, Western Australia, and in the 

Gippsland Basin in offshore Victoria. Production facilities and associated infrastructure were established. In 

1964, following the signing of an agreement between BHP and Esso, East Gippsland Shelf-1 (Barracouta-1) 

became the first offshore well drilled in Australia. The well was a success, encountering gas. Confirmed by a 

second well, the Barracouta field was proven as a commercial discovery and marked the commencement of 

major gas development for Victoria. By 1967, after the discovery of further gas in the Marlin field, contracts to 

secure gas supply were signed and platforms, pipelines and an onshore terminal were planned (Wilkinson, 

1988). Esso Australia (1988) further details exploration and production history in the offshore Gippsland Basin.  

Whilst Esso/BHP went on to make further discoveries offshore, including the Kingfish and Fortescue-Halibut 

fields, interest in petroleum exploration in the onshore basin has continued until the present day with a total 

of 197 wells drilled for the purpose of finding oil or gas. A large portion of exploration in the onshore 

Gippsland Basin targeted structures at the top of the Latrobe Group (Chiupka, 1996). None were 

discoveries, although shows and/or high background gas readings have been documented.  

To date, Lakes Oil is the only company to make a gas discovery onshore, announcing an estimated 1.7 Tcf 

of gas in the Wombat, Trifon and Gangell fields near Seaspray. Exploration carried out over the last decade 

by companies such Karoon Gas and Lakes Oil provide valuable insights into conventional and 

unconventional hydrocarbon plays in the Gippsland region via data and reports gathered from their 

respective activities. This review draws on this data along with other datasets. This information is drawn 

together to form the discussion presented in later sections of this report. 

 Coal 3.2
Black coal was first discovered around 1826, and brown coal discoveries followed in 1857. Although the 

black and brown coal resources of the Gippsland Region differ in their physical character, distribution and 

volume, both resources served the early needs of the southern Victorian community to power steam engines 

and small industries, and the vast brown coal deposits of the Latrobe Valley are still in use today for 

electricity production. 
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3.2.1 Early black coal exploration 

Following the discovery of coal near Cape Patterson around 1826 (Vines, 2008), surveys of the area between 

San Remo, Korumburra and Nyora identified numerous coal-bearing localities (e.g. Stirling, 1892; 1895 a, b, c). 

Stirling (1895a) records in detail the coal occurrences and numerous mining leases across the Korumburra and 

Jumbunna coal-fields. The Outtrim coal-field and coal seams at Berry’s Creek, Boolarra, Cape Paterson, 

Kardella, Kilcunda and Mirboo (Figure 3.1) had all been identified by 1895 (Stirling, 1895a, b, c). The coal was 

utilised locally for domestic purposes, steam production and even annealing steel. In 1909, the State Coal Mine 

in Wonthaggi was opened to supply coal to the Victorian railways (Edwards et al., 1944).  

 

Figure 3.1 South Gippsland black coal sub-crop. 

Mining for black coal was often hazardous, as was demonstrated by the devastating Wonthaggi State Mine 

disaster caused by an underground coal gas and coal dust explosion in 1937 that killed 13 miners (e.g. The 

Mercury, 1937). The role of coal gas in this disaster has been cited in recent years as evidence for the 
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presence of coal seam gas in the Strzelecki Group coals but it is unclear how much methane the coal 

actually contains relative to economic thresholds. Official reports on the disaster indicate that open-flame 

lamps were routinely used, which suggests that gas influx was not a major concern. No contemporary 

measurements of gas content exist, although a 1936 report by the mine manager quoted in Harper (1987) 

stated “The mines are not gaseous, and naked light is used, but stone dusting is adopted.” Stone dusting is a 

form of coal-dust hazard reduction, indicating that coal dust was considered the greater fire and explosion 

hazard. 

By the early 1960s many of the mines had closed. Seams had been mined out, some having reached depths 

(e.g. 300 metres) that were no longer considered economic. The State Coal Mine at Wonthaggi closed in 

1968 and is now a tourist attraction. 

3.2.2 Brown coal exploration 

Gloe (1984) documented the stages in which discovery, exploration and development of the Victorian brown 

coals took place. Brown coal was first discovered in the Latrobe Valley in the 1850s to the northeast of Moe. 

Numerous other discoveries had been made in previous decades, but attempts at development were 

hampered by complex geological structure and variable coal quality (Gloe, 1984).  

In the 1880s, activity initiated by a number of companies around Morwell led to the discovery of 30 and 50 

metre thicknesses of brown coal. When six seams totalling 245 metres thickness were encountered during 

drilling in 1890, the Mines Department proclaimed that the deposits were probably the greatest in thickness 

yet discovered in the world. In the early 1900s a program of drilling established the presence of a large 

resource sufficient to establish the State Electricity Commission of Victoria in 1921. The SECV oversaw the 

development of the state’s brown coal resources, initially focusing on establishing a power station to manage 

electricity generation and supply (Vines, 2008).  

In the 1950s long term planning to determine total coal resources and characteristics was undertaken. 

Because variability in coal quality had become a processing issue, drilling took place in areas previously 

drilled but this time to greater depths in order to test coal samples for key quality parameters (Gloe, 1984). 

Through the 1960s to 1980s, a combination of remote sensing using geophysical techniques and facies 

modelling followed by drilling helped to delineate additional fields outside the Latrobe Valley, such as the 

Alberton coalfield (Holdgate, 2003). 

Today in the Latrobe Valley, brown coal production is dominated by three mines: Hazelwood, Loy Yang and 

Yallourn. In 2013-14 total production in Victoria was 57.8 Mt (DEDJTR, 2015). 

 Coal seam gas 3.3
The first Coal Seam Gas (Coal Bed Methane) exploration licenses were granted in Victoria in 2001. 

Exploration to date has not yielded a commercial coal seam gas discovery. Exploration in the Gippsland 

region has centred over coal-bearing regions in South Gippsland and the onshore Gippsland Basin. 

Cancelled, surrendered and expired exploration licences are listed in Table 3.1.  
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Table 3.1 Cancelled, surrendered and expired Exploration Licences. 

Company Exploration Licence Target/activities 

Flatoak 4850 Cretaceous black coals in the Wonthaggi-Korumburra-
Inverloch region; thin seams <3m. No record of on-ground 
activities. 

Greenpower Natural Gas 4619, 4620, 4803, 4804, 
4805, 4806, 4807, 4808, 
4809, 5228 

Company annual reports indicate a focus on lignite 
resources for conventional mining and coal to liquids 
technology . 

Karoon Gas 4537 Tested Strzelecki Group for CSG and conventional gas 
potential (latter under a PEP). Drilled two wells 
(Megascolides-1 and -2) in 2004 and 2007, respectively.  

Leichhardt Resources 5081 Coals near Fish Creek targeted for CSG, coal mining and 
conversion to Syngas – desktop reviews and modelling 
carried out. No on-ground activities reported. 

Monash Energy Coal 4681, 4682 No report available. 

Mr Stanislaw Wassylko 5229 No report available. 

Sawells – Greenpower 
Energy  

4858, 4860, 4861, 4862, 
4859, 4902 

Sub-bituminous to high volatile bituminous black coal 
seams of the Wonthaggi Formation, Strzelecki Group. 

Desktop studies and drill-hole location plans. 

Seamair  5180 CSG in Strzelecki Group black coals near the Kongwak 
Monocline. Desktop studies only to plan drill holes. No on-
ground activities. 
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 Current tenements 4

Two types of tenements may be granted in Victoria to allow for gas exploration: Petroleum Exploration 

Permits and Exploration Licences. Petroleum Exploration Permits (PEPs) are granted to companies to 

explore for petroleum (including gas but excluding coal seam gas) under the Petroleum Act (1998). 

Prospective blocks are offered to companies via an acreage release process, which is run in tandem with the 

Commonwealth Acreage Release and other participating states and territories. Petroleum exploration may 

also be carried out under a retention lease, which enables the holder of an exploration permit to retain 

certain rights to a petroleum discovery that is not considered commercially viable at the time. Exploration 

Licences (ELs) for minerals, including coal and hydrocarbons contained in coal are granted to companies  

via a direct application process by the State Regulator under the Mineral Resources (Sustainable 

Development) Act (1990). 

 Petroleum exploration permits and retention leases 4.1
Current Petroleum Exploration Permits in the Gippsland region are restricted to the onshore Gippsland Basin 

and the Latrobe Valley and do not extend to South Gippsland (Figure 4.1). There are two Petroleum 

Exploration Permits (PEPs) and two Petroleum Retention Leases (PRLs). PEP166, PRL2 and PRL3 are held 

by Lakes Oil (Petro Tech Pty Ltd), and PEP170 is held by Icon Energy. Both companies have stated their 

intention to target tight gas in the Strzelecki Group (e.g. Lakes Oil, 2014 and Icon Energy, 2014). In addition, 

Lakes Oil is interested in pursuing exploration and production of oil from the Lakes Entrance oilfield in PRL3 

(Lakes Oil, 2012). 

 Exploration licences 4.2
The first Victorian exploration licence (EL) for coal seam gas (coal bed methane) was granted in  

September 2001 under the Mineral Resources (Sustainable Development) Act (1990). Between August  

2001 and May 2012, 35 separate exploration licenses were granted. Some companies have specifically 

targeted coal seam gas, whereas others have probably undertaken multi-commodity exploration that could 

include coal seam gas.  

Sixteen exploration licences that include coal seam gas as a target resource are current today over parts of 

Bass Coast, Baw Baw, Cardinia, Latrobe, East Gippsland, South Gippsland and Wellington Local Council 

Areas (Figure 4.2). The nine companies that hold current exploration licences are listed in Table 4.1. 
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Figure 4.1 Gippsland Basin onshore Petroleum Exploration Permits and Retention Leases. 

  



Onshore gas water science studies 

A review of gas prospectivity: Gippsland region 

26 

 

Figure 4.2 Current Exploration Licences with a Coal Seam Gas stated as a target.  
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Table 4.1 A list of companies that nominate coal seam gas as a target in their mineral exploration 

licence. 

 

Ignite Energy Resources (IER) holds the current exploration licence for the 3,800km
2
 EL4416 – the largest of 

all the exploration licences in Gippsland. The company is targeting the deeper lignite seams, containing 

biogenic natural gas created by microbial activity within the lower-rank coal (Ignite Energy Resources, 2014). 

The potential resource size reported by Ignite Energy Resources (2014) is 3.7 Tcf contingent resource (2C); 

independently estimated by MHA Petroleum Consultants (Table 4.2).  

  

Tenement  District Municipality Primary Owner 

EL4500 Gippsland Cardinia Shire Greenpower Natural Gas 

EL4416 Gippsland Wellington Shire Ignite Energy Resources 

EL4877 Gippsland Baw Baw Shire Sawells 

EL5210 Gippsland Baw Baw Shire Resolve Geo 

EL5212 Gippsland South Gippsland Shire Resolve Geo 

EL5227 Gippsland Baw Baw Shire Greenpower Natural Gas 

EL5270 Gippsland South Gippsland Shire Clean Global Energy 

EL5276 Gippsland South Gippsland Shire ECI International 

EL5320 Gippsland Baw Baw Shire ECI International 

EL5321 Gippsland Baw Baw Shire ECI International 

EL5337 Gippsland Baw Baw Shire Mantle Mining Corporation 

EL5170 Gippsland Wellington Shire La Trobe Fuels 

EL5274 Gippsland South Gippsland Shire ECI International 

EL5275 Gippsland Wellington Shire ECI International 

EL5322 Gippsland South Gippsland Shire ECI International 

EL5416 Gippsland South Gippsland Shire Leichhardt Resources 
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Table 4.2 EL 4416 gas estimates. 

Estimate Low (1C) Best (2C) High (3C) 

Contingent 0.66 Tcf 3.7 Tcf 9.1 Tcf 

Prospective 0.23 Tcf 1.3 Tcf 3.5 Tcf 

Source: MHA Petroleum Consultants 

 

The previous tenement holder of EL4416, CBM Resources, commenced a drilling program in 2002, which 

included involvement in two conventional petroleum wells. Gastar Exploration noted that in York-1, coals 

between 567 and 640 metres showed indications of methane gas and permeability (Gastar Exploration Ltd., 

2002). The York-1 formation evaluation log indicates gas readings higher than background values (7.9 units) 

however these readings (<1%) were not considered significant by the permit holder (Lakes Oil, 2002). 

Gastar (Joint Venture Partner with CBM Resources Pty Ltd), announced the drilling of the first pilot well for 

coal bed methane in EL4416 in the Gippsland Basin in May 2005. The pilot well (Burong #2) was drilled to a 

depth of 692 metres, intersecting a coal seam of around 14 metres thick (Gastar Exploration Ltd., 2005). A 

second pilot well (Burong #3) close-by to Burong #2 was planned, along with well completions using 

techniques commonly used in the Powder River Basin in the United States, with open-hole completions to be 

stimulated with water enhancements to flush away coal fines. The same article reported the intention to put 

the wells on production to gauge water and gas rates. No further information regarding the planned wells, 

techniques used and water production is available.  
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 Conventional gas 5

The following four sections of this review provide information about the four prospective gas types; the 

geological formations in which the gas might be found; and, if available, information about the characteristics 

of the formations that might provide evidence for prospectivity. A discussion about the prospectivity of each 

gas type is provided in Section 10 of this review. Each of sections 5 to 8 begins with an explanation relevant 

to the gas type presented. 

Conventional gas is stored in porous and permeable sedimentary rocks such as sandstone or limestone in 

geological structures known as traps. Traps are discrete structures that can be mapped with the aid of 

seismic surveys from the ground surface (or sea surface if offshore). The gas migrated into the trap through 

porous rock units from the source from which it was generated. Impermeable rocks known as a seal or cap-

rock directly above the structure trap the gas (Figure 5.1). 

 

Figure 5.1 Conventional gas schematic. 

Most of the 197 wells in the onshore Gippsland Basin to date have been drilled in the search for conventional 

hydrocarbons at the top of the Latrobe Group (the same strata in which oil and gas accumulations are found 

offshore). This drilling strategy has been unsuccessful despite large gas resources discovered in the Latrobe 

Group in offshore wells. 

Gas is present in small quantities through the onshore Latrobe Group (as seen in mud logs and shows 

observed in wells), and has moved through the sedimentary sequence over geological time; as is evidenced 

in analysis such as Fluid Inclusion Stratigraphy (Miranda et al., 2012, 2013). Natural leakage and seepage of 

hydrocarbons in the Gippsland region was investigated as part of an evaluation of geological carbon storage 

potential of the area (Goldie Divko et al., 2009). Data from soil gas surveys (for example) reveal the 

distribution of natural hydrocarbons in the current day soil profile. This data indicates that hydrocarbons 
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generated deeper in the rock sequence have migrated over millions of years through the Tertiary sequence 

(or part thereof) and potentially up fault planes. The migration of hydrocarbons beyond the top of the Latrobe 

Group onshore is more likely at the edge of the regional top seal – the Lakes Entrance Formation (Goldie 

Divko et al., 2010). 

For a conventional resource, the generation, expulsion, migration and accumulation of hydrocarbons is 

crucial: these components together are known as a petroleum system. If one part of the system fails then  

the likelihood of encountering a resource is reduced. In addition, events that occur after a resource is in 

place (has accumulated) may be favourable to its preservation or adversely affect the resource. In the 

onshore Gippsland Basin one such notable phenomenon is ‘water washing’ via the movement of 

fresh/meteoric waters through the reservoirs, which is thought to have degraded gas present in the  

Latrobe Group (Kuttan et al., 1986). 

Chiupka (1996) observed that past exploration failures at the top of the Latrobe Group in the onshore 

Gippsland region could be attributed to the erosional nature of the top Latrobe Group surface and the 

incursion of fresh water. As a result, Chiupka’s study outlined alternate hydrocarbon play fairways in the 

onshore Gippsland Basin, including and in addition to, that proposed earlier by Holdgate & McNicol (1992). 

Chiupka’s (1996) alternative plays in the onshore Gippsland Basin and adjacent South Gippsland region 

include intra-Latrobe Group plays (i.e. the Halibut Subgroup), a Late Cretaceous play (incorporating the 

Chimaera and Curlip formations – at the time described as Golden Beach Formation), and the Early 

Cretaceous Tyers River Subgroup (Neocomian) play at the base of the volcanoclastic tight sandstones of the 

Strzelecki Group. The two former plays are essentially both intra-Latrobe Group plays (noting that a change 

in stratigraphic nomenclature has occurred since publication of the work). The two later plays - the basal 

Latrobe Group and the Strzelecki Group - were targeted during the 1950s and 1960s but success offshore at 

the top of the Latrobe Group prompted explorers to switch their attention to the same strata onshore 

(Holdgate & McNicol, 1992).  

 Intra-Latrobe Group 5.1
The Latrobe Group extends from the offshore to the onshore Gippsland Basin and is approximately bound by 

the Lake Wellington Fault System to the north and the Foster Fault System to the south. The westerly extent 

in the onshore Gippsland Basin is marked by the outcropping margin of the Strzelecki Group. The Latrobe 

Group attains its maximum onshore thickness along the coast and thins to the west. At Golden Beach West-

1 (see Figure 5.2), the Latrobe Group is over 1500 metres thick; with the base of the sequence not reached. 

In the Lake Wellington Depression, the Latrobe Group thins to less than 300 metres. 

5.1.1 Halibut Subgroup extent 

The extent of the Halibut Subgroup is not mapped but most likely covers an area similar to that depicted in 

Figure 5.2. Chiupka (1996) mapped sandstone reservoirs and overlying sealing units within the Latrobe 

Group that correspond to the Halibut Subgroup. Oil-bearing sandstones from Seahorse-1 were correlated 

with sands in East Reeve-1 and Spoon Bay-1. 
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Figure 5.2 Distribution and thickness of the Golden Beach Subgroup in the onshore Gippsland Basin (from 

Goldie Divko et al., 2009). Around Darriman-1 there are volcanics of equivalent age to the Golden Beach 

Subgroup (Campanian). The blue number is the depth (mKB) of the subgroup top and the red number is the 

thickness; oil fields are shown in green and gas fields are red. Unnamed wells indicate where the Golden 

Beach Subgroup is absent onshore. 

5.1.2 Golden Beach and Emperor subgroup extent 

The lateral extent of the Late Cretaceous Golden Beach and Emperor subgroup units (i.e. the Chimaera and 

Curlip formations) has been mapped in the onshore portion of the basin (Bernecker and Partridge, 2001). 

The Golden Beach Subgroup is restricted to a small area to the immediate south of the Rosedale Fault, 

adjacent to the nearshore Golden Beach gas field (see Goldie Divko et al., 2009), whereas the Emperor 

Subgroup appears to have a wider distribution (see Bernecker and Partridge, 2001).  

5.1.3 Reservoir quality 

As depth increases, the porosity and permeability of the Latrobe Group decreases. Nonetheless, the porosity 

and permeability of the Latrobe Group is good, with porosities between 10 and 40% and permeabilities 

between 1 and 1000 mD. Measurements from core plug data often yield lower values than those from log-

derived methods because the coarse and friable nature of the sands makes laboratory analysis more difficult. 
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Figure 5.3 Porosity and permeability plots from the Latrobe Group in the onshore Gippsland Basin. A: 

porosity versus depth for the Latrobe Group; B: permeability versus depth for the Latrobe Group; C: porosity 

versus permeability for the Latrobe Group. Data are a compilation of new analyses (indicated by ‘new’ in the 

legend) and existing petroleum well data held by GSV (from Goldie Divko et al., 2009). 
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5.1.4 Seal capacity 

Chiupka (1996) carried out facies analyses on several wells intersecting the Late Cretaceous to Eocene 

intra-Latrobe sequence and identified both reservoir and sealing units within the sequence. Sealing capacity 

studies have demonstrated the potential of intra-Latrobe sealing units to effectively hold oil and gas 

accumulations (Daniel, 2005). Offshore oil and gas deposits held in place by intra-Latrobe seals also 

demonstrate good sealing capacity (Goldie Divko et al., 2010). 

5.1.5 Source rocks 

A study of kerogens from the Lygistepollenites balmei zone (Palaeocene) in the Gippsland Basin concluded 

that the host rocks were of predominantly terrestrial origin and that although there were a range of maturities 

present, the temperature was not high enough to cause significant hydrocarbon generation (Simpson, 1981). 

On that basis it was also concluded that the source of hydrocarbons in the system must have been from 

rocks deeper in the stratigraphic section.  

 Strzelecki Group 5.2
Strzelecki Group play potential was discussed by Holdgate & McNicol (1992). The unit was the target of 

previous drilling in South Gippsland (e.g. Tarwin Meadows-1). In the 1950s and 1960s wells drilled in the 

onshore Gippsland Basin around Woodside in the Alberton Depression (i.e. Woodside-1 and -2 and 

Woodside South-1) and farther to the north (e.g. Darriman-1, Seaspray-1, Duck Bay-1 and Wellington Park-

1) had also targeted the Strzelecki Group. More recently, Karoon Gas drilled into the basal Strzelecki to 

assess the unit as a conventional target (Grosser, 2005). 

Both the Tyers River Subgroup and Rintouls Creek Sandstone are thought to have been deposited around 

the basin margins and against the footwalls of the half grabens that developed during the initial rifting phase 

of the Gippsland Basin, thinning out towards the basin centre. A distribution of depositional facies and lateral 

extent was pieced together from sparse data and was presented BY Chiupka (1996). 

The Karoon Gas Megascolides-1 well (see Figure 1.4) was drilled at the northern basin margin to the south 

of Warragul and encountered strong oil shows and recorded high mud gas readings in a 7 m interval of 

sandstone (equivalent in age to the Rintouls Creek Sandstone). Porosities ranged between 12 and 15%. A 

sample from 1889 mRT, had a porosity of 10.5% and 56 mD permeability. A second well, Megascolides-2 

(see Figure 1.4), was drilled up-dip of Megascolides-1 to determine the lateral extent and vertical thickness 

of the oil-bearing sandstone, but the sandstone was completely absent and there were no hydrocarbon 

shows (Tolliday, 2007). 

Lakes Oil has worked towards understanding the prospectivity of the lower units of the Tyers River Subgroup 

in wells Yallourn North-1 and Loy Yang-2, but the unpredictable distribution of these units and the thickness 

of the overlying Strzelecki Group have impeded this work. 
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 Tight gas 6

Tight gas is sourced from relatively low permeability and low porosity sedimentary reservoirs (Figure 6.1). 

The lack of permeability does not allow the gas to migrate out of the rock. In this case the method to extract 

gas may involve fracturing the rocks to create artificial porosity and permeability. 

 

Figure 6.1 Tight gas schematic. 

Low permeability tight gas reservoirs may be sandstones, carbonates, shales or coal seams. A tight gas 

reservoir is characterised by a matrix porosity of ≤ 10% and a permeability of ≤ 0.1 mD exclusive of fracture 

permeability (e.g. Haines, 2006). The American Association of Petroleum Geologists (AAPG) uses the term 

‘tight gas sand’ to refer to low permeability sandstone reservoirs that produce primarily dry natural gas. 

Holditch (2006) defined tight gas reservoirs as “a reservoir that cannot be produced at economic flow rates 

nor recover economic volumes of natural gas unless the well is stimulated by a hydraulic fracture treatment, 

by a horizontal wellbore, or by use of multilateral wellbores”. 

There are two forms of tight gas. One is known as basin-centred or pervasive gas and the other is discrete 

and defined by the limit of a trap – such is the case for conventional reservoirs. Basin-centred gas is 

continuous and widespread in its distribution. Wherever the tight formation is intersected there will be gas, 

although explorers look for “sweet spots” with better permeability. The issues associated with gas recovery 

are technical and relate to the tight nature of the reservoir. This is also true for discrete tight gas where 

accumulations occur in low-permeability, poor-quality reservoir rocks in localised geological features such as 

structural traps. Regardless of the definition or type, Australia currently has no tight gas reserves 

(Geoscience Australia & BREE, 2014). 

  

http://naturalgasinfo.vic.gov.au/natural-gas/types-of-natural-gas/permeability
http://naturalgasinfo.vic.gov.au/natural-gas/types-of-natural-gas/porosity
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 Strzelecki Group 6.1
The Early Cretaceous (Albian-Aptian) volcanoclastic sandstones of the Strzelecki Group have been an 

exploration target for some decades (e.g. North Seaspray-1 in the 1960s) but since the late 1990s they have 

been the target of tight gas exploration. The average depth to the top of the Strzelecki Group sediments is 

approximately 1250 to 1500 metres below the surface. In general, the depth to the top surface increases 

towards the coastline and decreases inland, where the Strzelecki Group eventually outcrops across  

South Gippsland.  

Miranda et al (2011) calculated mean porosity and permeability values for the onshore Strzelecki Group. The 

calculated mean porosity was 14.3%. At depths greater than 1000 metres the value decreases to less than 

10% and below 2400 metres the range is 2 to 8%. Data from the well Boundary Creek-1A tend to skew the 

calculations because the reservoir characteristics of the Strzelecki Group in this well are far better than is 

usual for this sequence (Duddy & Cook, 2002) and so are excluded in the data ranges presented here. For 

example, the median permeability including Boundary Creek-1A is 1.2 mD but by excluding that well the 

permeability is 0.034 mD.  

Often, qualitative statements about permeability are noted. In wells such as Woodside South-1 porosities 

between 11 and 25% were recorded but the permeability was considered low. Watts (1965) commented that 

fresh water bearing sediments were encountered when drilling through the Latrobe Valley Coal Measures, 

whereas in the Mesozoic (Strzelecki Group), a drill stem test yielded salt water. This suggests that the 

permeability of the Strzelecki Group is so low as to not allow communication of fluids between the tight 

sandstones and overlying Latrobe Group. Mud log and FIS (Fluid Inclusion Stratigraphy) readings (Miranda 

et al., 2012, 2013) also exhibit a distinct change between the Strzelecki and Latrobe groups. 

The first recorded shows of gas within the Strzelecki Group were recorded primarily from a 1.2 metre 

sandstone interval with low porosity and permeability at 1148.5 metres depth in the North Seaspray-1 well, 

drilled by Arco Limited/Woodside (Lakes Entrance) Oil Co. N.L. in 1962. An open-hole drill stem test (DST) 

and formation test produced wet gas at a rate of 50 to100 Mcfd (Ingram, 1963). Subsequent Strzelecki 

Group gas shows were encountered in North Seaspray-3 (drilled in 2000/2004), Trifon-1 (2000), Gangell-1 

(2001), Trifon-2 and Wombat wells 1 to 3 (2004) and Wombat-4 (2009). Oil shows were also noted in the 

Wombat wells. 

 Wombat, Trifon and Gangell fields 6.2
Lakes Oil, which holds PRL2 (Petroleum Retention Lease 2), has announced 1.7 Tcf of gas (Campbell, 

2009) in the tight sands of the Strzelecki Group in the Wombat, Trifon and Gangell fields. 

The Wombat, Trifon and Gangell fields (see Figure 4.1) cover a combined area of 27 km
2
. The Trifon and 

Gangell fields are hosted within a defined, 8 kilometre east-northeast trending structural high that is fault-

bounded at top Strzelecki Group level (O'Brien & Campbell, 2005). Wombat wells 1 to 4 are located within an 

identified structural high at top Strzelecki Group level, based on 3D seismic data (Campbell, 2009).  

The Strzelecki Group reservoir in the Wombat field is considered to be a dual-type reservoir where gas  

is encountered both throughout the formation (with gas shows occurring well below the closure of top 

structures) and is also hosted in ‘sweet spots’ with improved porosity and permeability. As with conventional 

reservoir plays, variations in the original depositional environment appear to control the distribution and 

lateral continuity of the observed favourable sand intervals within the Strzelecki Group. These higher 

permeability units, together with the distribution of natural fractures, appear to be critically important in 

determining where favourable gas zones in the Wombat field occur (as was observed for Trifon-1  

and Gangell-1).  
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These observations led Lakes Oil to use hydraulic fracture stimulation technology to investigate commercially 

viable flow rates from the Wombat gas field. A fracture stimulation program, conducted on a gas zone at 

1,470 metres depth in Wombat-2, initially proved successful, but subsequent complications with the 

formation led to impeded gas flows that necessitated chemical treatments to restore pressure build-up and 

flow rates. Lakes Oil planned to use fracture stimulation for tight gas production in 27 gas zones identified 

between 1400 and 2500 m in Wombat-4 (Lakes Oil, 2012). As indicated by StimLOG modelling, Lakes Oil 

(2012) considered that fracture lengths of 200 ft (61 m) or 400 ft would increase the flow of the gas in the 

Strzelecki Group to economically viable rates. It is also considered that any completion involving hydraulic 

fracturing may be facilitated by natural fractures in the Strzelecki Group identified from sonic log signatures 

such as those seen in Gangell-1 (Short & Mulready, 2001). 
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 Shale gas 7

Shale gas is sourced from very fine-grained sedimentary rocks that have low porosity and permeability and 

are organic-rich (Figure 7.1). The gas is held on organic matter in the rock, in pores between grains and any 

fractures present in the rock. As with tight gas, hydraulic fracturing of the formation to create artificial porosity 

and permeability may enhance production flow rates. 

There are no estimates or reserves for shale gas in the Gippsland region. No petroleum exploration permit 

holder has indicated that they are searching for shale gas. Apart from analysis carried out on source rock 

samples from 10 wells in the onshore Gippsland Basin to understand potential source rocks as part of 

conventional petroleum systems (Mehin & Bock, 1998), no study has ever focused on shale gas potential  

in Gippsland. 

 

Figure 7.1 Shale gas schematic. 

Shale gas is found in organic-rich fine-grained sedimentary rocks. Many shale gas and shale oil producing 

formations are not strictly shales, as the mineralogy of the reservoir is often dominated by quartz and calcite 

(e.g. Ottmann & Bohacs, 2014). A shale gas target formation is essentially the source rock component of a 

petroleum system. After first identifying that a target formation (shale/source rock) is present, it is important 

to establish the richness, quality and maturity of the unit/s. 
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 Shale gas reservoir properties 7.1
The prospectivity of a shale gas play is reliant upon a number of geological considerations: the thickness of 

the formation and lateral extent, the depth to the formation, organic content (measured as TOC), kerogen 

type, thermal maturity, overpressure, and the brittleness of the formation as dictated by its mineralogy.  

7.1.1 Organic richness 

Hydrocarbons are mostly carbon (by molecular weight) and so the amount of carbon in a rock, to some 

extent, determines the ability of the rock to generate hydrocarbons. A measure of the organic richness of a 

rock is known as TOC (Total Organic Carbon). A guide to the richness of a source rock according to TOC is 

given in Table 7.1. 

Table 7.1 A guide to organic richness in shales as given by TOC. (After Law, 1999). 

Generation potential Wt% TOC, Shales 

Poor 0.0 – 0.5 

Fair 0.5 – 1.0 

Good 1.0 – 2.0 

Very good 2.0 – 5.0 

Excellent >5.0 

 

7.1.2 Kerogen type 

Organic matter is transformed into kerogen over time, at greater burial depths and with increasing 

temperatures. The type of kerogen that forms depends on the original depositional environment of the organic 

matter. Sediments may be deposited in either the terrestrial or marine realm. Organic matter derived from 

terrestrial versus marine environments determines whether a source rock is more likely to generate oil or gas.  

Kerogens are classified into four types (Table 7.2). The more hydrogen in the kerogen, the more likely it is to 

generate oil, and the higher the quality of the kerogen (Law, 1999). Type I kerogen is mainly oil prone but is 

uncommon; although the largest oil shale deposit in the world - the Green River Formation in the US has 

Type I kerogen. Type II kerogens can produce oil or gas depending on temperature. Type III kerogens are 

derived mostly from plant debris deposited in terrestrial settings and are gas prone. Most coals contain Type 

III kerogen. Type IV kerogen has little potential for generating oil or gas. A source rock may contain one or a 

mixture of kerogen types. Source rock characterisation studies rate the hydrogen content (and hence 

kerogen type) by a hydrogen index (HI) and oxygen index (OI) derived from careful measurement of material 

given off as a lab sample is heated through the generation phase (pyrolysis).  

Table 7.2 Kerogen types. (After McCarthy et al., 2011 and Law, 1999). 

Kerogen type Predominant 
hydrocarbon potential 

Amount of 
hydrogen 

Source material General environment 
of deposition 

I Oil Abundant Mainly algae Lacustrine (lake) 

II Oil and gas Moderate 
Mainly plankton, some 
contribution from algae 

Marine 

III Gas Small Mainly higher plants Terrestrial 

IV Neither None Reworked, oxidised material Various 
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7.1.3 Thermal maturity 

Rock exposure to heat over time changes the chemistry of organic matter, and that change or ‘thermal 

maturity’ can be measured by vitrinite reflectance (expressed as Vr). Vitrinite is a one of several components 

of coal (known as macerals) found in buried organic matter. As the organic matter becomes thermally mature 

with burial and increasing temperature it devolves volatile components (i.e. oil; and at higher temperatures, 

gas) and the molecular structure of the remaining organic matter, including the vitrinite, becomes 

increasingly well-ordered and hence more reflective to light. Reflectance is measured on a polished surface 

of vitrinite in a sedimentary rock sample immersed in oil (ASTM, 2011). Other measures of maturity exist, 

and with care can be related back to vitrinite reflectance. 

Source rocks within certain ranges of thermal maturity (expressed as vitrinite reflectance) are said to be 

immature, or within the oil or gas windows, or over-mature. The gas window is taken as a Vr of between 

1.2% and 3%. The state of thermal maturation is as important as organic richness in determining the 

effectiveness of shale as a source rock and as a shale gas target. The depth range of the gas window and its 

lateral extent within a potential shale gas target are important constraints on prospectivity. 

 Identification of source rocks in Gippsland 7.2
There has been no effort to identify and map source rocks with shale gas potential in Gippsland. The 

stratigraphic and geographic extent of any potential shale gas play is unknown in the onshore Gippsland 

Basin and in the South Gippsland region. The data available is derived from source-rock studies in support 

of conventional exploration. 

A number of wells that have intersected the Strzelecki Group have drilled through thick shales or shaly 

sequences (e.g. Megascolides-1 and Tarwin Meadows-1 drilled in South Gippsland). Re-examination of the 

logs and core and cuttings samples (where they have been acquired) might identify potential shale gas 

target units in the Strzelecki Group.  

In their source rock analysis of onshore Gippsland samples, Mehin & Bock (1998) found that Strzelecki 

Group source rocks were organically richer than overlying Late Cretaceous samples; although it is unclear 

from the analysis, which types of lithologies were analysed. The Megascolides-1 terrestrial plus algal  

source as described in Grosser (2005) is consistent with the findings of Mehin & Bock (1998). Maturity  

within the Strzelecki Group was found to increase away from the North Seaspray area at the coast towards 

the inland locations Loy Yang and Rosedale. Potentially, thermal maturity data from the Wombat, Trifon  

and Gangell wells (that were drilled after this analysis) could be integrated into the dataset to confirm the 

observed trends.  

Mehin & Bock (1998) noted that previous onshore wells encountered potential Strzelecki source rocks with a 

range from 0.21 to 26.83 wt% TOC, with vitrinite reflectance in oil (Ro) values of 0.35-1.04% and HI values 

from 23 to 179 mg hydrocarbon (HC)/g TOC. These values are wide ranging and without knowing the 

individual lithologies and their place within a stratigraphic framework, it is difficult to draw any conclusions 

about shale gas potential.  

Although the Late Cretaceous Emperor and Golden Beach subgroups have been identified in the Seaspray 

Depression (Bernecker & Partridge, 2001), the fluvio-deltaic facies of the Chimaera and Curlip formations 

would seem unlikely hosts for thick potential ‘shale gas’ sequences. However, fluviatile shales of Late 

Cretaceous age have been interpreted as a source of oil generation in the offshore Gippsland Basin (Burns 

et al., 1984). These shales are located much deeper, at 3900 m, than the same aged sequence onshore. 
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 Coal seam gas 8

There are currently no known coal seam gas accumulations in the Gippsland region. With only a relatively 

small number of holes drilled for the purpose of coal seam gas, exploration and evaluation of the resource 

potential in Gippsland is at a very early phase. The only test to date in Gippsland for coal seam gas was 

undertaken by Karoon Gas in 2004 when they drilled Megascolides-1 to test separate coal seam gas and 

conventional gas plays. 

Both black and brown coal seams are found in the rocks of the Gippsland region. Black coal seams are older 

and are part of the Early Cretaceous Strzelecki Group. The brown coals of the Gippsland Basin and Latrobe 

Valley are younger (Eocene to Miocene) and are named, from oldest to youngest, the Traralgon, Morwell 

and Yallourn seams.  

The most extensive known black coal deposits in the Gippsland region are found across, and adjacent to,  

a feature that is named the Wonthaggi Basement Ridge. The ridge, between Wonthaggi and Korumburra, 

hosts coal deposits that occur at or near the surface. Most of these coal deposits were discovered and 

extracted in the late 1800s and early 1900s. Drilling undertaken at this time, throughout the region’s  

early industrial history, provides much of what is understood today about the distribution of black coal  

in the region. 

Brown Coal is synonymous with the onshore Gippsland Basin and in particular the Latrobe Valley, which 

generates more than 43 000 gigawatt hours of electricity (BREE, 2014; NEM, 2014) for the State of Victoria 

(accounting for more than 80% of the State’s electricity output) from vast shallow coal deposits of the 

Oligocene to Miocene Yallourn and Morwell Seams. The underlying Traralgon seams are, for the most part, 

too deep to mine at the surface but are considered to have potential for coal seam gas (Holdgate, 2003).  

 Formation of coal seam gas 8.1
Coal seam gas (CSG), also called coal bed methane, refers to naturally occurring methane in coal seams. 

The coal; mainly decomposed and essentially fossilized plant material, acts as the reservoir for the gas and 

the gas is itself generated within the coals. So the coal is both the source of the gas and the reservoir or 

storage unit for the gas (Figure 8.1).  

Gas can be generated in one of two ways – either by biogenic processes, where microbes convert the coal 

into methane, or by thermogenic processes where heat drives chemical changes in the coal to produce 

methane. Biogenic and thermogenic processes are explained in more detail in Appendix 1.  

Most gas in coals is stored by holding on to (or by being adsorbed on to) the coal surfaces and trapped by 

water pressure. When water pressure is reduced, gas will flow from the higher pressure area to the lower 

pressure area. This technique is used to allow the gas to flow towards a well where it is produced.  

The permeability of the coal (how well the pores and gaps within the coal are connected) is of great 

importance because no amount of gas trapped in coal will be released unless there is a path for it to flow 

from between the organic particles of the coal. Permeability tends to decrease with depth in the subsurface 

because rocks deeper down are compressed under the weight of rocks above, but shrinkage of the coal with 

maturation can lead to small fractures (known as cleats) that can provide permeability. Further discussion on 

how gas is stored and moves in coal is presented in Appendix 1. 
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Figure 8.1 Coal seam gas schematic. 

 Coal properties 8.2
Coal is composed largely of organic matter, with some sedimentary particles like silt or clay (referred to as 

the ash content) and moisture (water trapped in the coal).These components and their constituents (e.g. 

carbon, hydrogen, oxygen and volatile matter) can all be measured via laboratory analysis. Coal composition 

can be quite variable, affecting the quality of the coal and, as a consequence, its potential use. 

Coals form from the deposition and burial of plant remains. The geological time period and prevailing 

environmental conditions influence the type of plant materials that grow and are deposited, and in turn 

determine the internal composition of the coal. Coals are composed largely of a variety of microscopic 

constituents known as macerals, essentially like minerals in rocks. Different macerals give rise to different 

internal compositions within the coal, changing the ability to form gas and the potential to produce gas. 

The depositional environment also influences the distribution of coals in a rock sequence; whether the coal is 

widely distributed or limited in its extent; whether the seams are thick or thin; whether there are many closely 

stacked seams vertically or few separated by a lot of inter-seam (inorganic) material; and whether or not the 

seams are connected. 

To what extent coal formation has occurred is also important. This is reported as coal rank (Figure 8.2). Rank 

is a product of the chemical and physical changes that take place within the organic matter in the coal over 

time and with increasing temperature. As the coals are more deeply buried and exposed to higher pressures 

and temperatures, the rank increases. When the coal rank has increased to anthracite all gas has been 

generated and is no longer in the coal; the coal is then said to be “overcooked”. Lower ranked coals have 

high moisture content whereas the highest ranked coals have lost their moisture. The capacity of a coal to 

hold gas generally increases with rank but the relationship is actually more complex and dependent on a 

number of variables (Moore, 2012). Lower rank coals such as lignite are more likely to present as a biogenic 

coal seam gas play, whereas higher ranked coals will tend towards thermogenic gas.   
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Figure 8.2 Correlation of different rank parameters, all approximate. (After Moore, 2012). 

Coal rank can be defined in a number of ways. One of these is thermal maturity, a measure of which is 

vitrinite reflectance (expressed as Vr). Vitrinite is a type of maceral found in organic matter in coals. 

Reflectance is measured from a polished surface of vitrinite in a sedimentary rock immersed in oil (ASTM, 

2011). Values which correspond to a coal rank suitable for coal seam gas range from about 0.2 to 2.0% 

(Figure 8.2). 

The permeability and to a lesser degree, the porosity of a coal and the adjacent rocks, is a key variable in 

the recovery of coal seam gas. The porosity of a rock refers to the gaps or pore spaces between the grains 

where fluids or gas can reside. If those gaps or pore spaces are well connected, the rock is considered 

permeable. Permeability may also be created by fractures in a rock – that is microscale displacement within 

the rock sequence. In coals in particular, fractures known as cleats form in two sets perpendicular to each 

other and are known as face and butt cleats. They are important as they create both porosity and 

permeability in coal seam gas reservoirs. 

Numerous different measurements of gas can be taken from a coal sample to assess suitability for coal 

seam gas production. The first of these is the gas type or quality (e.g. hydrocarbons such as methane versus 

inert gases such as CO2 – the latter of no value for combustion purposes). Next is the measurement of 

coalbed gas content by the collection of freshly drilled coal samples and the measurement of gas emitted 

over weeks or months (gas desorption) as outlined in Seidle (2011). The gas content in cubic metres per 

tonne is compared with the coal sample’s ultimate gas holding capacity to determine the saturation. A 

saturated coal will begin to release gas immediately as the hydrostatic pressure of water is relieved, whereas 
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an undersaturated coal will require greater removal of water pressure before gas production begins. The 

pressures at which gas production begins and ceases are important factors in the design of production 

equipment and in measuring the economic recovery factor.   

In the absence of reliable desorption gas content measurements, the holding capacity, and other geological 

information may be used to estimate a possible gas content indirectly. 

 Coal seam gas from black coal 8.3
No coal seam gas accumulations have been discovered to date in the Early Cretaceous black coals of the 

Strzelecki Group in either South Gippsland or the onshore Gippsland Basin.  

Most of the known coal deposits in South Gippsland are shallow – occurring at or near the surface. Data is 

sparse and comes from drilling activity around 100 years ago. Few modern deep wells have been drilled in the 

area. Tarwin Meadows-1 was drilled near Tarwin Lower in 1965, and more recently Megascolides-1 and -2 

were drilled by Karoon Gas Ltd in 2004 and 2007. Megascolides-1 is of particular interest because it provides 

the only test of any coal in the Gippsland region for coal seam gas.  

With so few deep exploration wells drilled and limited seismic data over South Gippsland, the understanding 

of the underlying basin structure and stratigraphy (and the coals within) is perhaps the most limiting factor in 

a review of potential coal seam gas from Strzelecki Group black coals. 

8.3.1 Black coal seam distribution and thickness 

The distribution and surface expression of black coal in South Gippsland is controlled by the north east 

striking Early Cretaceous basin forming faults (Holdgate, 2003). Most of the known black coal seams of 

South Gippsland are found at shallow depths (i.e. less than 400 metres) on or adjacent to subsurface 

Palaeozoic highs - the Wonthaggi and Tyers basement ridges. These include the coals of the Dudley and 

Kirrak basins at Wonthaggi, with smaller deposits at Kilcunda, Woolamai, Cape Paterson, Jumbunna, 

Outtrim, Kongwak and Korumburra (See Figure 3.1). Along the Tyers Basement Ridge are the small deposits 

located at Coalville, Mardan, Mirboo North, Yinnar South and Jeeralang Junction. Between the basement 

ridges are troughs, which make up a thick (i.e. greater than two kilometres) and more complete Strzelecki 

Group sedimentary sequence. The Wonthaggi coals represent the older part of the Strzelecki sequence and 

it is unknown whether or not the same coals are present in the troughs. 

Although worked over through mining activity, the distribution of coals in the Kirrak and Dudley basins gives 

some indication of black coal distribution. The Kirrak and Dudley basins, occupy areas of 4.5 and 9.4 km
2
 

respectively. In the Kirrak Basin, two coal horizons were separated by up to 152 metres of sandstones and 

minor mudstone bands. The upper coal varied in its thickness but was up to 0.91 metres thick. Several 

thinner coals (10 cm to 15 cm thick) were also associated with this horizon. The lower horizon had only one 

coal seam with a maximum thickness in excess of 1.8 m (Edwards et al., 1944).  

In the Dudley Basin, as many as eight separate coal seams were intersected by bores, with only two of the 

seams within a vertical thickness of about 305 metres considered of workable thickness at the time. The 

upper coal, in some places with a thickness of 3.4 metres, was worked over an area of 6.3 km
2
. The lower 

coal was separated from the upper coal by 76 m to 91 m of sandstones and mudstone. It was thinner than 

the upper coal, with a maximum thickness of 1.2 metres, and extended over a smaller area (2.8 km
2
) and 

was mined out by 1942 (Edwards et al., 1944). 

  



Onshore gas water science studies 

A review of gas prospectivity: Gippsland region 

44 

In contrast to the relatively laterally continuous coals of the Kirrak and Dudley basins, intense faulting  

and intrusion by basaltic dykes truncated and compartmentalised other coalfields. Edwards et al. (1944) 

reported that more than 1,000 minor faults, with throws of from 0.6 to 7.6 metres were encountered in mine 

workings to 1944 within a total area of 13 km
2
. The spacing of the faults was about 0.8 to 1.6 km apart, 

dividing the coal basins into roughly rectangular areas, each of which was compartmentalised and had to  

be mined separately.  

Coals were encountered in Tarwin Meadows-1 between 445 and 610 metres downhole; although it is difficult 

to ascertain individual seam thicknesses from the cuttings description (Laing, 1965). 

Thin coals were observed by Grosser (2005) in Megascolides-1, mainly between 816 and 1160 metres 

downhole. From log analysis a total of 12.2 metres coal thickness was reported between 716 and 1098 

metres. The seams ranged in thickness from 5 cm to 1.02 m with the most common thickness around 20 cm. 

A total of 43 individual seams were identified. 

8.3.2 Physical characteristics 

The Wonthaggi coals were described as alternating bands of bright and dull coal, of varying thickness 

(Edwards et al., 1944). Some bands and components (macerals) in the bright coals were described as 

having brilliant lustre and conchoidal fracture. Some of the coals intersected in the Tarwin Meadows-1 well 

were variously described as black and dull, some with sub-concoidal fracture, and others, bright with clean 

fractures and calcite vein material. In Megascolides-1, macerals from the inertinte group were commonly 

seen in coal samples (Grosser, 2005). 

The air-dried moisture content of Strzelecki black coals is low: 5-10% moisture (Holdgate, 2003) and 2.9% 

(from Megascolides-1, Grosser, 2005). Volatile matter is recorded from 30 to 35% (Holgate, 2003) and 

23.7% (Grosser, 2005).  

The ash content of the Strzelecki black coals is variable. Traditionally low ash contents have been recorded (6-

12%; Holdgate, 2003). However, Karoon Gas Ltd (Grosser, 2005) found their coal sample had an ash content 

of a much higher than expected 47.4%. Karoon’s predrill studies had shown that the documented ash content 

from mines and bores in the Narracan Trough were far lower. The high ash content and presence of many thin 

seams indicated potential coal seam splitting towards a major distributary channel with a higher sediment influx 

rather than the meandering fluvial depositional system interpreted at Wonthaggi (Medwell, 1954). 

8.3.3 Black coal rank 

The shallow Strzelecki black coals measured from outcrop have vitrinite reflectance values between 0.5  

and 0.67% and are therefore considered high volatile bituminous coals in rank (Holdgate, 2003). Slightly 

higher vitrinite reflectance values ranging from 0.64% to 0.89% from a coal sample between 1039.25 and 

1040.12 m in Megascolides-1 were consistent with a subbituminous to high volatile B bituminous coal rank 

(Grosser, 2005). 

8.3.4 Coal seam gas measurements 

A gas content derived from a Megascolides-1 coal sample taken between 1039.25 and 1040.12 m using an 

inverted, water filled measuring cylinder, resulted in a desorption gas content of 3.37 m
3
/tonne DAF (dried air 

free) over 2.45 days (Grosser, 2005). No calculation was made for gas lost in sample recovery or residual 

gas after desorption. The gas composition was essentially 100% methane with a small amount (0.01 Mol%) 

of carbon dioxide (Grosser, 2005). 
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Petrophysical analysis was also undertaken over the coal-bearing interval of 716.48 m to 1098.55 m (12.2 m 

black coal) using the PETROLOG CBM module to identify coal types and compute potential gas content 

(Grosser, 2005). These petrophysical calculations gave potential gas contents commonly at 289.8 SCF/ton  

and up to 363.4 SCF/ton (8.1-10.1 cubic metre/tonne), which were substantially greater than from the one 

measured desorption sample. The discrepancy between the results of this analysis and the sample result 

would need to be confirmed by standard method sample desorption data from the Wonthaggi Coal Measures. 

Mud log data from petroleum wells can give qualitative data on relative gas content (drill gas) and 

composition and are useful screening data for assessment of coal seam gas potential, but give no insight 

into coal permeability or potential coal seam gas productivity. In Tarwin Meadows-1, two minor gas shows 

and a strong gas show were recorded (Laing, 1965). The stronger show was associated with coarser sand, 

considered at the time as a potential conventional target, whereas one of the minor shows corresponded 

with a coal at the top of a coal-bearing sequence between 445 and 610 metres downhole. A thick shale-rich 

unit overlies the coals at this location. 

8.3.5 Black coal permeability 

The Strzelecki Group volcanoclastic sandstones are generally referred to as “tight”. That is, the sandstones 

exhibit very low porosity and permeability (as discussed in Section 6). The same observation has been made 

from deep wells drilled in the South Gippsland black coal bearing region. For example, Karoon Gas Ltd 

(Grosser, 2005) observed that the alteration upon burial of the Strzelecki Group volcanoclastic sandstones 

created very low porosity and permeability. No permeability measurements were taken during the drilling of 

Megascolides-1 to confirm these observations. The same is true of Tarwin Meadows-1. 

Cleats were reported in coals around Wonthaggi (Edwards et al., 1944). The cleats were reported at 

intervals of less than 13 mm in the bright coal but were more widely spaced in the dull coal. The strike of the 

cleat ranged from 338° to 344°, an orientation which roughly parallels the present day compressional stress 

regime in the onshore basin (Nelson et al., 2006). This would allow cleat fractures to remain open, 

enhancing permeability and coal seam gas flow from the coal. In many parts of the Wonthaggi coalfield the 

cleat joints were lined with thin seams or films of calcite, reducing permeability.  

 Coal seam gas from brown coal 8.4
The Latrobe Valley and onshore Gippsland Basin is host to a very large and significant coal resource (430 

billion tonnes, DEDJTR, 2015). Many of the Latrobe Valley coal fields are found at or near the ground 

surface but older seams are intersected at greater depths in the onshore Gippsland Basin, in particular, 

within a portion of that area known as the Seaspray Depression. This area, and the coal seams hosted 

within, has been a target for coal seam gas exploration in recent years. It is the size of the resource, the 

lateral extent and thickness of coal seams that is attractive to coal seam gas explorers. Estimates of around 

335 billion tonnes of in situ brown coal below the areas currently mined (Holdgate et al., 2000) have provided 

sufficient motive to attract companies to explore for coal seam gas since 2001. 

To a large degree, the distribution - extent and thickness of the Traralgon coal seams is known (Holdgate et 

al., 2000; Langhi et al., 2014), although there is some complexity in the stratigraphy that remains unresolved 

and is worthy of further investigation.  

Routine laboratory analysis of brown coals intersected above 300 m in Gippsland provides useful coal quality 

data for mining purposes but this data has not been collected from coals below this depth. Therefore, useful 

coal quality data from the Traralgon coals is absent, along with additional data that could provide information 

about the coal as a coal seam gas reservoir. 
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8.4.1 Traralgon coal seam distribution and thickness 

The Traralgon brown coal deposits are extensive, stretching from offshore of Sunday Island in the south to 

Lake Victoria in the north; essentially underlying the entire Gippsland Basin and the Latrobe Valley (Holdgate 

et al., 2000). A number of Traralgon coal seams are recognised and mapped across the onshore Gippsland 

Basin. The standard nomenclature divides the seams into T0, T1 and T2 seams with the former being 

uppermost in the sequence. Holdgate et al. (2000) further divided T0 from a-c, T1 from a-d and T2 from a-e. 

Although this subdivision is not widely used, is suggestive of the complexity hidden within the accepted 

simplistic scheme. 

The Traralgon seams are intersected at depths between 30 and over 1000 metres below the ground surface 

in the onshore basin; some individual seams may aggregate to form a total thickness between 100 and 150 

metres. Langhi et al. (2014), drawing on the work of Holdgate et al (2000) and a facies model created from 

geophysical log data, mapped the net thicknesses for all Traralgon coal seams (T0, T1 and T2) where the 

seams were greater than 3 m thick in the Seaspray Depression. The overall net thickness for all seams is 

greatest to the west and the north-east; decreasing to the east-south-east – offshore (Figure 8.3).  

The depths at which the Traralgon seams are intersected increases towards the coast. For instance, in the 

parish of Wulla Wullock in the Seaspray Depression, bores intersect over 800 metres of Sale and Seaspray 

group sediments before reaching the uppermost Traralgon seam. 

 

Figure 8.3 Net thickness of the T0, T1 and T2 coal seams in the Traralgon Formation. The thickness isolines 

(modified from Holdgate et al, 2000) overlie the top of the Traralgon coal sequence (i.e. top Latrobe Group 

merged with the base of the Dutson Sandstone member). Negative and positive values represent height 

above and below mean sea level, respectively (Langhi et al., 2014). 
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Using data from over 9000 bore intersections in the onshore Gippsland Basin and the Latrobe Valley, GHD 

(on behalf of the Department) built a model of all brown coal seams across the region. Outputs from that 

model are available as surfaces for viewing and downloading (GeoVic, 2015). The Traralgon coals (T0 and 

T1) are divided into upper, mid and lower seams and T2 divided into 2a and 2b seams. Roof and floor 

contours are available for all seams. Further validation of the model, including a quality check of the borehole 

input data, is required to further improve the outputs. 

To enable coal seam gas production modelling, a static sedimentary facies model was constructed for the 

southern part of the Seaspray Depression (Ricard & Strand, 2014). Four sedimentary facies were defined 

from 11 gamma ray logs across the model domain: 1. Coal, 2. Channel (sand), 3. Crevasse splay (silt) and  

4. Background (mud). As for other fluvio-deltaic depositional systems, coal seam and aquifer connectivity is 

high and where sealing units are present, they are discontinuous (Richard & Strand, 2014). The high 

percentage of sand in the system is particularly evident in a cross-section through the Seaspray Depression 

(Figure 8.4). 
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Figure 8.4 Cross-section showing wells across the Seaspray Depression (N.B. wells flattened at the top of 

the Latrobe Group) (Langhi et al., 2014). 
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8.4.2 Physical characteristics 

The brown coals of the Latrobe Valley are divided into five lithotypes based on physical appearance when 

dry: colour, texture, degree of gelification, weathering pattern, and other supplementary physical properties. 

The lithotypes are: Pale, Light, Medium-light, Medium-dark and Dark (George & Mackay, 1991). 

The moisture content of the Yallourn, Morwell and Traralgon coals ranges from 50 to 70% (Gloe, 1984). 

Values extracted from the Latrobe Valley coal model (Table 8.1) show that the Traralgon coals at shallow 

depths (<300 m) are at the lower end of the range. Gloe (1984) remarked that the few samples analysed 

from the Traralgon seams had a much lower moisture content, at about 30%.  

Table 8.1 Average values for Traralgon coal seams. 

Seam 
(coal model) 

Mass  
(tonnes) 

Moisture 
% (DAF) 

Volatiles 
(%) 

Fixed carbon 
(%) 

Ash content  
(%) 

TRU 52846 52.66 47.50 64.22 9.75 

TRM 24724 52.50 46.92 64.01 16.55 

TRL 34036 51.05 46.70 64.15 8.82 

T2A 34832 52.38 47.19 64.95 4.18 

T2B 18867 51.40 46.64 64.82 5.58 

Note: Data from the Traralgon seam database; polygon encircling Seaspray Depression; the deepest sample from 296 m had a 

moisture content of 46.5%. 

 

8.4.3 Traralgon brown coal rank 

There is an increase in vitrinite reflectance values in Merriman-1, North Seaspray-1, Burong-1 and Seaspray-

1 where the coals are intersected deeper in the sedimentary sequence (i.e. values of 0.39 and the highest, 

0.51, aligning coal rank with the sub-bituminous C to A range). At some of these depths (e.g. 1200 m), the 

permeability of the coals is expected to be too low for coal seam gas retention and production. Sander & 

Connell (2014) estimated a vitrinite reflectance between 0.35% and 0.38% for Latrobe Group coals at around 

900 metres depth, which suggests that the coals are immature for thermogenic gas (see Figure 8.3).  

8.4.4 Gas indications 

Mud log and FIS data from the onshore Gippsland Basin indicate the presence of naturally occurring 

methane within the sedimentary sequence, in particular within the Latrobe Group. For the Traralgon coals 

within the Latrobe Group there are no gas content data (desorption, sorption or saturation). 

In order to model potential field-scale coal seam gas production of the Traralgon coal seams, Sander & 

Connell (2014) estimated a range from 0.3 m
3
/t and 3 m

3
/t based on brown coal analogues from New 

Zealand, Sumatra and India. A value of 3 m
3
/t was used for their modelling because a gas content below this 

figure would not be considered commercially viable in Australia given the current cost base and current 

technologies (Sander & Connell, 2014).  
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8.4.5 Permeability in Traralgon brown coals 

Coals in the Traralgon Formation act as aquitards as established by Schaeffer (2008), who used a 

conductivity of 1 x 10
-6

 m/day (0.001 mD) for the Traralgon coals. As a comparison, the sandy interbeds 

were represented by a conductivity of 5 x 10
-3

 m/day (6 mD). As these are average values, the actual range 

of values across heterogeneous coal sequences will be higher and lower. From a compilation of 

permeabilities it is clear a range of values exists but that values less than 1 mD (0.001 m/day) prevail (Table 

8.2). Woskoboenko et al. (1991) quoted values of 0.01 mD to 100 mD for the Latrobe Valley coal seams with 

zones of higher permeability encountered across the Loy Yang dome. 

Table 8.2 Compilation of reported conductivity values (m/d). (After Beverly et al., 2015). 

Author 

Seam 
Schaeffer 
(2008) 

SKM (1999, 
2001) 

PDA 
(2006) 

USQ 
(2011) 

Aquaterra 
(2008) 

Harlow & LeCain 
(1993) 

DPI 
(2009) 

T1 
1 x 10-6 to  

5 x 10-3 
 

0.015 to 
0.1 

0.0005 to 
1.36 

0.04 6 x 10-5 to 1.8 x 10-1 0.0025 

T2 
1 x 10-6 to  

5 x 10-3 

1.1 x 10-6 to 
3.56 x 10-6 

0.015 to 
0.1 

0.0005 to 
1.36 

0.04 6 x 10-5 to 1.8 x 10-1 0.0025 
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 Geological uncertainty 9

There are many uncertainties that apply to the potential for natural gas resources across both South 

Gippsland and the onshore Gippsland Basin. A lack of fundamental geological data and knowledge restricts 

the understanding of the underlying structure and stratigraphy of South Gippsland, which in turn limits the 

ability to draw solid conclusions about the presence or absence of natural gas resources in the region. Some 

inferences can be made about resource potential from early coal exploration efforts and a very limited 

number of wells, with Megascolides-1 drilled by Karoon Gas in 2004 providing the greatest insights to date in 

the region. 

In the onshore Gippsland Basin, a long history of petroleum and coal exploration has resulted in the 

acquisition of a significant amount of data but most of the acquisition was focused on the Latrobe Group and 

so is of limited value in the evaluation of the Strzelecki Group across the region. It is therefore often by 

chance that the same data may be relevant to the assessment of unconventional resources.  

Some unconventional gas plays demand a more advanced knowledge of the geological framework, such as 

a depositional facies model. Where relevant basic data – seismic surveys, geophysical logs, and core and 

cuttings, along with laboratory analysis, have been acquired, opportunities exist to develop this knowledge 

but such work has yet to be directed at unconventional resources. 

For some gas play types, physical parameters as yet unmeasured may be so significant that the presence or 

absence of a potential resource of any significance is entirely uncertain (for example, the lack of gas content 

and permeability data for the Traralgon coal seams).  

 Broad geological uncertainty 9.1
Drilling from 50 years ago provides an example of the uncertainty associated with the structural geology of 

the Gippsland region, specifically South Gippsland. Tarwin Meadows-1 was drilled in 1965, 7.5 kilometres 

from outcropping Palaeozoic basement. Alliance Oil Development Australia expected to drill through the 

entire Strzelecki Group sequence, but the well reached a total depth of 1203 metres in the Strzelecki Group 

without reaching the basement. At this depth the equipment used was at its physical limit, preventing  

further drilling. 

The underlying Palaeozoic structure and basement geometry is yet to be resolved. Structurally deformed 

Early Cretaceous sedimentary rocks (the Strzelecki Group) sit atop a structurally deformed Palaeozoic 

basement. To unravel the complexity of the underlying geology requires regional scale acquisition to 

advance the understanding of the structural framework. Field observations provide some understanding but 

as with most geological problems, it is subsurface data that is ultimately required. A number of seismic 

transects across South Gippsland might define the presence or absence of the Strzelecki Group and its 

thickness, and provide some information about the geometry of overlying units where present. 

A gravity infill survey completed across South Gippsland (Matthews & McLean, 2015), when coupled with 

existing gravity data and sparse rock density data will provide a modelled surface that best approximates the 

underlying Palaeozoic basement terrain (Carstairs et al., in prep). This modelling will improve the 

understanding of the underlying structure of the South Gippsland subsurface. 

With scarce seismic data acquired over South Gippsland to date (in a small area to the northwest) and much 

of that being directed at Latrobe Group features rather than the deeper Strzelecki Group, the uncertainty in 

the underlying geological structure across the whole Gippsland region is significant. 
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 Delineation of formations of interest 9.2
Past geophysical surveys and drilling may help to identify a geological unit (its presence or absence) but the 

detailed stratigraphic knowledge of the sedimentary succession may be lacking. There may be some 

reasons for this: for example, the data is available and of sufficient quality but it has not been studied or the 

data is available but the quality is insufficient to support detailed analysis. Some examples pertinent to the 

current review of the Gippsland region are provided below. 

There is no existing 3D geological framework model of the onshore Gippsland Basin. Some interpretation was 

carried out by 3DGEO in 2009 for the Geological Survey of Victoria, but the surfaces created and subsequently 

depth converted (McLean & Blackburn, 2013) are restricted to the offshore basin. Modifications to the 

stratigraphic nomenclature of the offshore basin (Bernecker & Partridge, 2001), to some extent apply to the 

onshore portion of the basin. Reconciliation of modern and historical naming and identification of the onshore 

Latrobe Group subunits is required. Until that mapping work is carried out, uncertainty in the Latrobe Group 

geology limits the understanding of conventional and coal seam gas plays in the onshore Gippsland Basin. 

In South Gippsland, some data regarding black coals is available from early shallow coal mine drilling and a 

few more recent wells. For the Strzelecki Group black coals, while some coal distribution and quality data 

exists, gas content and saturation is estimated at best. Furthermore, data is restricted to a few well-explored 

geographic regions such as the area on and adjacent to the Wonthaggi Basement Ridge.  

The uncertainty related to prospectivity in this instance is the lack of definition of the extent of seams and 

their thickness, coupled with the depth to coal seams and the connectivity of the seams. 

 Specific rock characteristics 9.3
Once regional structure and target formation distribution are known, specific data about source rock, 

reservoir and sealing unit characteristics is required. Above all, proper measurements of gas content and 

permeabilities in both brown and black coal units is required. 

In the Gippsland region, little of the data previously acquired specifically targeted unconventional plays. 

While previous studies such as Holdgate & McNicol (1992), Chiupka (1996), Mehin & Bock (1998), 

Bernecker & Partridge (2001) and Goldie Divko et al. (2009) provide some insights into potential reservoir 

distribution and characteristics, some of these studies were undertaken long before unconventional gas was 

envisaged as prospective in the Gippsland region, and most were completed with traditional style 

conventional plays in mind, even if for the purpose of geological carbon storage. 

Using existing data it is possible to better understand the characteristics of target formations through log 

analysis and laboratory analysis of core and cuttings samples. The latter is sometimes not applicable because 

useful analysis of dried, ageing coal samples are limited and sometimes the coarse-grained nature of samples 

(i.e. conventional porous and permeable reservoir samples) is such that regular analysis is not possible. 

Miranda et al. (2011) outlined some specific examples to further characterise the reservoir characteristics of 

the Strzelecki Group tight gas play in Gippsland. 

 Mineralogical assessment of various intervals within the Strzelecki Group, using techniques such as 

Ammtec’s Automated Mineralogical Analysis (AMA). This would provide information as to the specific 

mineralogy within the formation and how it may impact gas extraction and thus overall reservoir quality.  

 Porosity and permeability assessment from cores and petrophysical (log) data of tight gas intervals 

within the Strzelecki Group. Detailed porosity and permeability data from cores provide information 

regarding the physical properties of selected tight gas intervals, and these cores can also be used to 

assess the geomechanical properties of the formation.  
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 Geochemical evaluation and hydrocarbon family typing of Strzelecki Group gas samples across the 

onshore and nearshore parts of the basin. This could provide information that would help to better 

understand regional gas migration pathways and the charge history of the hydrocarbon system.  

 Reservoir simulation models of the Strzelecki Group to increase the understanding of the lateral and 

vertical distribution of potential tight gas sand targets in a regional context.  

 Evaluation of both regional and local pressure or stress conditions and their effect on hydraulic fracture 

development. This would provide information that might assist in determining the distribution and 

orientation of fractures.  

 Fracture simulation studies and geomechanical assessment of selected intervals within the Strzelecki 

Group (using, for example, Formation Micro Imager data – borehole images). Cores could be used to 

illustrate and assess both the physical properties and the behaviour of the formation under proposed 

fracture stimulation conditions. 
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 Gas prospectivity 10

There is some prospect of finding conventional and/or unconventional gas in the onshore Gippsland Basin 

and in South Gippsland. Past drilling has shown that there is gas present but a commercial quantity of gas 

from the region has not been produced. An estimated 1.7 Tcf of tight gas in the Wombat, Trifon and Gangell 

fields (Campbell, 2009) and a potential 3.7 Tcf of coal seam gas in the Traralgon Formation within the 

confines of EL4416 (IER, 2014) represent the current state of exploration for, and definition of, gas resources 

in Gippsland. For this reason it would appear that tight gas and coal seam gas are the most prospective gas 

types in Gippsland. Significant geological uncertainty remains at this time (for example, the unknown gas 

content of the Traralgon coal seams).  

 Conventional gas 10.1
The most prospective area for conventional gas in the onshore Gippsland Basin is the Seaspray Depression 

where the thickest sequence of the Latrobe Group is encountered. With a greater thickness there is an 

increased probability of intersecting seal and reservoir pairs trapping hydrocarbons within the Maastrichtian 

to early Eocene Halibut Subgroup, below the traditional top Latrobe Group conventional play (i.e. Chiupka, 

1996). Numerous offshore fields with oil and gas at the top of the Latrobe Group also have intra-Latrobe 

accumulations. 

With the Late Cretaceous (Turonian to Campanian) Emperor and Golden Beach Subgroups identified in 

some wells close to the coast (Colliers Hill-1, Dutson Downs-1 and Merriman-1) there is some possibility that 

hydrocarbons may be intersected in these strata, also within the Seaspray Depression. Gas shows at this 

stratigraphic level in Dutson Downs-1 confirm that hydrocarbons have migrated into the Golden Beach 

Subgroup (Chiupka, 1996). Offshore, gas in the Kipper field is found in the Chimaera Formation of the 

Golden Beach Subgroup, while the Longtom field gas is reservoired in the Curlip Formation of the Emperor 

Subgroup. 

In the South Gippsland region, the only prospective target for conventional gas is at the base of the 

Strzelecki Group where post-rift alluvial deposits have better porosity and permeability than the overlying 

volcanoclastic sandstones. The well Megascolides-1 encountered these sandstones with high gas readings 

and oil shows. However, the distribution of these sandstones is unknown, although postulated by Chiupka 

(1996). Megascolides-2 drilled only one kilometre away from Megascolides-1 failed to intersect the 

sandstones, demonstrating the enormous cost brought to bear on a project by geological uncertainty. 

 Tight gas 10.2
The two current permit holders in the onshore Gippsland Basin, Lakes Oil and Icon Energy, are seeking to 

target gas in the Strzelecki Group over the Seaspray Depression.  

The reservoir characteristics of the Wombat field tight gas sands compare favourably in terms of porosity, 

permeability and environments of deposition, with those of sands within US tight gas basins. Although  

some natural fractures are present within the Strzelecki Group (Short & Mulready, 2001), it would seem that 

fracture stimulation treatments would be required in order to establish and maintain commercial flow rates 

(Lakes Oil, 2012). Average production flow rates for gas per well are likely to be considerably lower than  

for conventional gas wells and numerous wells would be required within each prospective field (Miranda  

et al., 2011). 
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It is clear that recoverable gas (and oil) are present within the fields delineated by Lakes Oil in PRL2. 

Commerciality of that recovery has not been determined. It is also worth considering whether or not the tight 

hydrocarbon plays encountered in the Seaspray Depression fit the classification as described by Shanley et 

al. (2004) where the tight reservoirs are confined to structures rather than continuous tight basin-centred gas 

across wider areas. 

 Shale gas 10.3
In the United States, the most successful shale oil plays (which also have associated shale gas plays) have 

a number of similarities. These plays have concentrated Type II kerogen in marine strata, present-day total 

organic carbon (TOC) above 2%, a net thickness of TOC-rich rocks of more than 20 metres, thermal maturity 

in the oil window (for oil, with shale gas reservoirs being overmature oil source rocks), a brittle lithology that 

can sustain fractures, abnormally high fluid pressures, and a tectonic history conductive to oil retention. 

From the limited information available, the shale gas prospectivity across the Gippsland region is almost 

impossible to determine. Although shale-rich units have been encountered in onshore drilling, there is limited 

source rock data that can be tied directly to geological units. In the absence of a geological framework model 

of the Strzelecki Group and the Late Cretaceous Golden Beach and Emperor subgroups onshore, it is 

difficult to make any meaningful comment about the lateral extent of potential shale gas units. 

In comparison to large shale gas plays in the US, such as Eagle Ford and the Barnett Shale which have 

marine derived Type II kerogen, Gippsland source rocks are of terrestrial origin. TOC-rich rocks are present 

in both the Early and Late Cretaceous sequence in the onshore Gippsland Basin, but their associated 

lithologies would require further investigation.  

Most shale gas plays are found in organically rich mudstones (Ottoman & Bohacs, 2014) where there is 

decreased clay content and quartz and calcite are increased, increasing the brittleness of the formation. The 

mineralogical composition of two samples from the Strzelecki Group in the Seaspray Depression (Darriman-

1 at 1440 m and Carrs Creek-1 at 1633.8 m) were determined using Automated Mineral Analysis (Hamilton 

& Ly, 2009). Both samples had very little carbonate component and less than 30% quartz each. These 

samples were specifically tested for a geological carbon storage project, and were no doubt selected on the 

basis that they may contain a higher clay component. If these samples are representative of the formation 

then these may not be brittle enough to fracture stimulate to enhance gas production. However, if these 

samples represent units within the Strzelecki Group with a high clay content and reduced clay percentages 

are found elsewhere in the formation, then the formation may be brittle enough.  

 Coal seam gas 10.4
Black coal seams in South Gippsland and brown coal seams in the onshore Gippsland Basin may have coal 

seam gas potential. Brown coal seam distribution is generally known and the coal thicknesses in the onshore 

Gippsland Basin are substantial, but whether or not there is gas present is unknown. Black coal seams in 

South Gippsland have a known gas content (one value) but the distribution of deeper coals away from 

basement ridges where historic mining took place, is unknown. The black coal seams are thin, sparse, and 

through faulting and thickness changes, are irregularly distributed. Permeability is unknown. 
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10.4.2 Brown coal 

Techno-economic modelling undertaken by CSIRO shows that at base case reservoir parameters 

(permeability of 10 mD and an assumed gas content of 3 m
3
/t) at a price of 7 AUD$ per GJ coal seam gas 

recovery would not be commercially viable. For production to be commercial the target coal seam reservoir 

would have to have a higher gas content (4 m
3
/t) or a permeability of at least 100 mD. Sander & Connell 

(2014) also found that a play could be economic if the reservoir permeability was lowered (1 mD) but the gas 

content was increased to 8 m
3
/t. Given that gas derived from biogenic production does not generally exceed 

4 – 6 m
3
/t (Moore, 2012), the latter scenario is unlikely. At a lower gas content than 2.5 m

3
/t even a high 

permeability of 1000 mD would not result in a profitable coal reservoir. 

The brown coals of the Gippsland Basin are often compared to the coals of the Powder River Basin in 

eastern Wyoming, USA. Typical in-situ coalbed gas content for the Powder River Basin is low (0.62 - 1.4 

m
3
/t, Seidle, 2011) and the permeabilities are relatively high (35 - 500 mD) (Advanced Resources 

International, 2002); the latter of the two parameters accounting for the viability of the play.  

In a heat flow modelling study, lower than predicted temperatures were measured in water bores in the 

onshore Gippsland Basin (Harrison et al., 2012).  Cooler water from recharge into the basin may be flowing 

through the coals, reducing the temperature. The water may also introduce nutrients into the system that 

may have implications for coal seam gas potential (i.e. an increase in potential for biogenic methane). 

10.4.3 Black coal 

Karoon Gas Australia drilled Megascolides-1, located on the Northern Terrace of the Narracan Trough along 

the northwestern edge of the onshore Gippsland Basin, in 2004. Megascolides-1 was the first deep, modern 

exploration well to be drilled in the area as a combined coal seam gas and conventional hydrocarbon test of 

the Early Cretaceous Strzelecki Group.  

Grosser (2005) drew some comparisons between the Strzelecki Group black coals intersected in 

Megascolides-1 and the coals of the San Juan Basin, which straddles New Mexico and Colorado in the 

United States. Traditionally gas in the basin has been produced from fractured sandstones, but since the 

1970s-1980s, production from coal seam gas reservoirs (the Fruitland Formation) has increased from next to 

none to around 1 trillion cubic feet per year (Fassett, 2013). Gas contents in the San Juan Basin are 0.7-18.3 

m
3
/t (Seidle, 2011). However, likening the Strzelecki Group black coals to those of the San Juan Basin may 

not be justified because the former is characterised by sub-optimal attributes: low gas content (i.e. 3.37 m
3
/t), 

a lower than optimum coal rank (lower than medium-volatile bituminous) and thin and discontinuous black 

coal distribution. 
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 Hypothetical gas development 11

scenarios 

Hypothetical resource development scenarios for the Gippsland Basin are considered at a prospect/field 

scale, sub-regional scale and regional scale. Three scenarios each for coal seam gas and tight/shale gas are 

included. For prospect/field scale scenarios for coal seam gas and tight/shale gas, localities are based on 

information that is publicly available.  

Scenarios for conventional gas have not been tested due to the lack of past success and the geological 

uncertainties associated with conventional gas exploration in the onshore Gippsland Basin. While the current 

tenement holders over the Seaspray Depression are searching for tight gas, there is no exploration for 

conventional gas in the region. Potential scenarios for all gas types are also difficult to delineate across 

South Gippsland due to the geological uncertainty associated with the area.  

At a regional scale for coal seam gas the entire sub-crop extent of the Traralgon coal seams below a down-

hole depth of 200 metres is considered (i.e. a maximum extent). For tight/shale gas, a region including the 

onshore Gippsland Basin and the Latrobe Valley where the Strzelecki Group sub-crops, comprises the 

regional scale scenario area.  

For the gas development scenarios outlined here, the sub-regional scale scenario covers a physical area 

that lies, in lateral extent, between the prospect/field scale and the regional scale. The sub-regional scenario 

areas are more ‘considerate’ of prospectivity than are the regional scale scenarios.  

Further information related to the following sub-sections is tabulated in Appendix 2.  

 Coal seam gas (brown coal) 11.1
Three scenarios for project development are presented in Figure 11.1.  

Scenario 1 – Prospect/field scale 

At a prospect/field scale scenario 1 covers the Burong pilot area identified by IER and Gastar (Gastar 

Exploration Ltd., 2005). The scenario area includes the extent of the top of the Traralgon seams within the 

Burong structure – an extent of 8.4 km
2
.  

Scenario 2 – Sub-regional scale 

The second scenario covers an area that includes the roof of the Upper Traralgon coal seam (T1) sub-crop 

between 400 and 800 metres down-hole depth within EL4416 inside the Seaspray Depression – an area of 

some 438 km
2
. 

Scenario 3 – Regional scale 

The third scenario covers an area of 2793 km
2
 where the Traralgon coal seams sub-crop below 200 metres 

down-hole depth within the Seaspray Depression and the Latrobe Valley. 
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Figure 11.1 Gippsland Basin coal seam gas development scenarios. 

 Tight/shale gas 11.2

Three scenarios for tight/shale gas development are presented (Figure 11.2). In addition, a number of 

scenarios may be applied at a prospect/field scale (see below). 

Scenario 1 – Prospect/field scale 

The development of tight gas within the onshore Gippsland Basin is focused on gas shows observed within 

structural traps at top Strzelecki Group level (and potentially the Golden Beach Subgroup) in the Wombat, 

Trifon and Gangell fields (see Figure 4.1). A number of smaller scale prospects (Echidna, Steele and Carrs 

Creek) have also been identified (Lakes Oil, 2014), and these are included here. Scenarios for project scale 

development might combine any or all of the prospects/fields. One scenario might include the development 

of the fields only, while another might include all areas covered by both fields and prospects. 

Scenario 2 – Sub-regional scale 

The second scenario encompasses an area that includes the prospects/fields shown in Figure 11.2. 

Essentially, scenario 2 assumes that the entire area – the prospects, fields and all areas in between are 

prospective for tight/shale gas.  
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Figure 11.2 Gippsland Basin tight/shale gas development scenarios. 

Scenario 3 – Regional scale 

The third scenario covers an area of 5374 km
2
 and includes all tight/shale sub-crop areas in the onshore 

Gippsland Basin and Latrobe Valley. The northern-most extent is delineated by the Lake Wellington Fault. 

The northwest extent is taken from Constantine (2001) and the southern boundary is defined by the edge of 

the ranges and the onshore Gippsland Basin proper. 
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 Conclusions 12

Two sedimentary sequences in the onshore Gippsland Basin and one in South Gippsland are prospective for 

natural gas. The Early Cretaceous Strzelecki Group across the Gippsland region is a potential target for all 

natural gas types: conventional, tight, shale and coal seam gas. The overlying Latrobe Group in the onshore 

Gippsland Basin has potential for conventional gas and coal seam gas. 

The largest barrier to better understanding the natural gas prospectivity of the Gippsland region is the geological 

uncertainty associated with all gas types. As outlined in section 10, in some cases a lack of basic geological data 

translates into uncertainty about the geological framework at a regional scale. Where data exists from previous 

exploration, it is often insufficient for characterising unconventional gas potential. Unknowns may include gross 

geological structure, the distribution and thickness of geological units, and the distribution of key lithologies and 

their properties within formations (such as mineralogy, maceral content, gas content, porosity, permeability, 

organic content, maturity and mechanical properties). However, available data has been drawn together in this 

review in order to provide direction for the water science studies on natural gas prospectivity. 

Past explorers have searched for conventional targets in the relatively coarse-grained units at the base of 

the Strzelecki Group. In 2004 Karoon Gas found indications of oil and gas in this conventional play at the 

base of Megascolides-1 and a gas content of 3.37 m
3
/t from a Strzelecki Group black coal sample from the 

same well. The coal seams were thin and sparse and with lateral continuity unknown, there remains a large 

degree of geological uncertainty associated with coal seam gas potential from Strzelecki Group black coals. 

The distribution of coarse units at the base of the Strzelecki Group has been proposed but so few wells have 

been drilled and there is little seismic data across the area that again, a significant degree of geological 

uncertainty remains. Also, within the Strzelecki Group, Lakes Oil has an estimated 1.7 Tcf of tight gas in the 

Wombat/Trifon/Gangell fields in the Seaspray Depression. No company has targeted ‘shale-rich’ units within 

the Strzelecki Group but for the purpose of the water science studies, tight and shale gas plays were 

“combined” to assess the potential impact of hypothetical gas production on water resources. Tight gas 

within the Strzelecki Group is the unconventional resource that is best supported by reported results.  

Although gas shows and kicks in mud log readings at the top of the Latrobe Group (the traditional conventional 

play in the Gippsland Basin) have been encountered in previous drilling, fresh water flushing of the formation 

has been cited as the possible explanation for a lack of accumulations. Prior to the discovery of oil and gas in 

the offshore Gippsland Basin, drilling in the 1950s and 1960s targeted the older Late Cretaceous basal Latrobe 

Group units with no success. Both of these plays, together with intra-Latrobe Group units, have the potential for 

conventional gas but considering past exploration efforts that potential must surely be diminished. 

Brown coaIs within the Traralgon Formation of the Latrobe Group are extensive and attain great thicknesses. 

Modelling carried out by Sander & Connell (2015) shows that for an estimated gas content of 3 m
3
/t and a 

permeability of 10 mD, gas production in the current market would not be viable.  

In the offshore Gippsland Basin 9120 PJ of gas have been produced to date, and an estimated 9253 PJ of 

conventional gas remains in place. This remaining conventional gas sits at the top of the resource pyramid 

(e.g. McCabe, 1998) where small volumes of high-quality gas resources are relatively easy to develop and 

the extraction costs are lower. For the most part onshore gas resources, particularly the unconventional 

resources, sit at the base of the pyramid. These might be larger in volume but lower in quality, and they are 

more difficult to develop and more costly to extract. 
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Glossary 

Term Explanation 

Basin A geological depression filled with sediments. 

Exploration The phase of operations in which a company searches for oil or gas by carrying out 
detailed geological and geophysical surveys followed up where appropriate by exploratory 
drilling in the most prospective locations 

Fault A break or planar surface in a brittle rock across which there is an observable 
displacement. 

Gas show An observation of hydrocarbons. An increase in gas readings from gas-detection 
equipment in a petroleum well. 

Permeability The degree to which gas or fluids can move through a rock. 

Play An area in which hydrocarbon accumulations or prospects of a given type occur  
(e.g. shale gas play). 

Porosity The amount of pore space in between the grains in a rock that are available for air, water, 
other fluids or gas to be stored. 

Production The phase of bringing well fluids to the surface and separating then and storing, gauging 
and otherwise preparing the product for transportation. 

Prospective resources Petroleum that is potentially recoverable from undiscovered accumulations. 

Prospectivity An assessment, whether qualitative or quantitative, of the potential for prospective 
resources. 

Reservoir A rock or geological formation that may hold petroleum within the pore spaces in the rock. 

Seal An impermeable rock that forms a barrier or cap above reservoir rocks such that fluids 
cannot migrate beyond the reservoir. 

Source rock A rock rich in organic matter, which, if heated sufficiently, will generate oil or gas. 

Trap Any barrier to the upward movement of oil or gas, allowing either or both to accumulate. 

Source: APPEA (2015); Geoscience Australia (2015); Schlumberger (2015). 
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Abbreviations and units 

ASX Australian Securities Exchange 

AMA Automated Mineral Analysis 

CBM Coal Bed Methane 

CSG Coal Seam Gas 

DST Drill Stem Test 

EL Exploration Licence 

FIS Fluid Inclusion Stratigraphy 

GSV Geological Survey of Victoria 

LPG Liquefied Petroleum Gas 

mD Millidarcies 

Mt Million tonnes 

Nm nanometres 

PEP Petroleum Exploration Permit 

PJ Petajoules 

PRL Petroleum Retention Lease 

PRMS Petroleum Resource Management System 

SECV State Electricity Commission of Victoria 

SCF/ton Standard Cubic Feet per Tonne 

Tcf Trillion Cubic Feet 

TOC Total Organic Content 
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Appendix 1 

Formation of gas in coal 
When natural gas (methane) is found within coal it is usually classified as an unconventional resource. The 

term unconventional refers to the fact that the gas is stored and extracted in a fundamentally different way 

than in the porous sandstone, limestone or highly fractured reservoirs that most oil and gas has been 

produced from to date. Other unconventional reservoirs include shale gas, shale oil, and tight sandstones, 

for example. A coal reservoir is unique in that it is composed almost entirely of organic material, whereas the 

other reservoirs are not. That the reservoir is composed of mostly organic material significantly affects how 

this reservoir type behaves in all of its properties. A major shift in thinking and engineering, from a 

conventional reservoir sense, is therefore needed, before any gas can be optimally extracted.  

The starting point for understanding coal seam gas (CSG) reservoirs is to ask three basic questions: How is 

gas generated? How is gas stored? How does gas move through the coal reservoir? 

The purpose of this appendix is to give concise answers to the above questions. The cited references will 

help readers investigate further if needed. 

How is gas generated? 
Coal seam gas may be produced through two very different pathways. One pathway is a biological process 

(and thus gas generated in this way is called ‘biogenic’ in origin), where microbes living within the coal 

actually convert coal molecules into methane. The second pathway is purely a chemical transformation 

driven by heat (and thus the gas is appropriately termed ‘thermogenic’) related to deeper burial that 

‘devolatilizes’ the coal, with one of the volatiles released being methane. Just about all conventional gas 

plays are derived through thermogenic processes. Although coal seam gas production worldwide is 

predominately thermogenic gas, up to 10% is biogenic in origin (Strąpoć et al., 2011). For an idea of scale, 

total world production was at least 2 trillion cubic feet (Tcf) in 2009. 

Biogenic coal seam gas 

It has long been recognized that methane can be generated from microbes living within the coal (Rogoff et 

al., 1962) but it has only recently been discovered how that process works. To generate methane from coal 

requires the cooperation of two out of the three domains of life on earth: Bacteria and Archaea. There are 

literally hundreds of microbial taxa that are found in coal (Flores, 2013; Moore, 2012a; Strąpoć et al., 2011).  

It is a consortium of bacteria that first takes the coal molecules – the actual, complexly-structured organic 

materials – and breaks them down (Figure A1.1). In relatively simplistic terms, there are two pathways that 

the bacteria use to consume the coal molecules; an anaerobic oxidation process and fermentation. These 

processes result in either production of acetate or carbon dioxide. Then the Archaea take over. It is thought 

that Archaea make the final conversion into methane through acetoclastic and CO2-reduction 

methanogenesis (Strąpoć et al., 2008).  
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A character of biogenic coal seam gas plays is that they may vary significantly in their gas content, both 

vertically within a single seam as well as laterally (see Mares &Moore, 2008; Moore, 2012a; Warwick et al., 

2008). Microbes are quite sensitive to their environment, thus even slight changes in temperature, pH, 

salinity and amount of available surface area within the reservoir will affect methane generation (Green et al., 

2008). In addition there seems to be some evidence that the type of coal substrate is important; higher 

concentrations of waxy and resinous material may be more attractive to the microbes for conversion into 

methane (Mares, 2009; Moore, 2012a; Scott et al., 2007). 

 

Figure A1.1 Simplified pathway of secondary biogenic methane production in coal (from Moore, 2012a). 

The methanogenic microbes find it difficult to survive in temperatures above 55ºC (Scott & Fleet, 1994). 

Thus, biogenic gas generation tails off quickly above this temperature. However, it should be noted that if a 

coal is uplifted above this temperature threshold and re-inoculated with Bacteria and Archaea – most 

probably from groundwater recharge into the reservoir – then there may be renewed biogenic gas generation 

(Ayers Jr., 2002; Faiz et al., 2003; Flores et al., 2008; Smith & Pallasser, 1996). 
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Thermogenic coal seam gas 

As coal is buried and heated its molecular structure rearranges itself. The most fundamental trend is that of 

increasing carbon content the deeper (and hotter) the coal bed is buried. In order for carbon to increase, the 

proportion of other elements, primarily oxygen, hydrogen, nitrogen and sulphur must decrease. These 

elements are thus more ‘volatile’ and this process is called de-volatilization. One of the most abundant 

molecules expelled is CH4 – methane (Kopp et al., 2000).  

The onset of thermogenic gas generation is approximately at the transition of subbituminous to bituminous 

coal (Figure A1.2) (Clayton, 1998). The exact timing of onset of thermogenic gas generation can vary. Some 

coals may start generation at slightly lower or slightly higher thermal maturities (i.e. rank) depending largely 

on the organic composition of the coal seam (Moore et al., 2014; Petersen, 2004, 2006; Whiticar, 1994). As 

long as there is a seal over the coal seam, gas will stay within the coal reservoir. Kinematic studies indicate 

that a sizeable volume of gas per unit of coal will be evolved, enough to completely ‘fill up’ any available 

space within the coal (Hunt, 1979; Zhang et al., 2008).   

Cessation of thermogenic gas generation is thought to occur at temperatures greater than 555°C (Lewan & 

Kotarba, 2014). As with the onset of gas generation, there is no single temperature that de-volatilization will 

be complete, and will be dependent on reservoir composition and overall thermal history effects.  

 

Figure A1.2 Schematic showing biogenic and thermogenic gas generation in relation to coal rank and the oil 

window. (Modified from Moore, 2012a). 

  



Onshore gas water science studies 

A review of gas prospectivity: Gippsland region 

73 

How is gas stored? 
In conventional reservoirs (typically sandstone and limestone), gas is stored within the pore space between 

the grains; that is, gas is ‘free’ and distinct from the surrounding rock material. Indeed, gas compressibility is 

an important consideration in conventional gas plays because with depth more gas can be compressed 

within the pore void. Coal holds its gas in a fundamentally different way. 

Methane has a tendency to be sorbed (attached) onto the surface of organic materials. It is generally thought 

that methane can be absorbed or adsorbed. Absorption is where the methane is ‘dissolved’ within the 

molecular structure of the coal, whereas adsorption is when methane molecules have a physical attachment 

(through weak van der Waal forces) with the organic material (Ceglarsk-Stefańska & Brzóska, 1998; 2002; 

Rice, 1993). It is generally thought that most methane is attached through adsorption.  

Thus it is the surface area of pores, not the pore volume, as in conventional reservoirs, which is ultimately 

the most important character in determining gas storage potential in coal. A practical consideration of this is 

that pore volume can remain the same but pore surface area can change drastically, with no pore volume 

increase, just by changing the size and abundance of the pores (Moore, 2012b). Pore surface area is also 

incredibly abundant in coals. In just one cubic centimetre, pores can have an internal surface area between 3 

to 115 m
2
 (Radlinski et al., 2004; Mares et al., 2009; Şenel et al., 2001).  

Pores range in size from very small (angstroms) to relatively large (millimeters). In general, coal is thought to 

have a dual porosity system: large fractures and smaller pores (Clarkson & Bustin, 1999; Cui et al., 2004). 

Volumetrically, the fractures, though hugely influential in the reservoir’s permeability, are not where the 

methane is predominantly stored. Storage is mostly in pores less than 50 nm. Actually, the pore system is 

classified as those pores that are >50 nm (macropores), 2 – 50 nm (mesopores) and <2 nm (micropores) 

(Gan et al., 1972; Şenel et al., 2001). It is the micropores that are thought to hold most of the methane 

(Moore, 2012a). 

Finally, although rank plays a large and important part in determining pore size (Gan et al., 1972), it is the 

organic composition of the coal that has the most direct influence. Studies by Bustin & Clarkson (1998) and 

Mares et al. (2009) indicate that different organic compositions will have different size distributions of pores; 

this ultimately also affects the storage capacity for methane as well. 

How does gas move through the coal reservoir? 
One of the many differences between conventional gas and coal seam reservoirs is that methane tends to 

stay put; firmly attached to the organics in a coal bed. Until, that is, there is a pressure drop, caused by de-

watering, which allows the methane molecules to break the weak van der Waals forces and travel from 

higher to low-pressure areas. The de-watering process reduces hydrostatic pressure, at first near the drill 

hole but over time further and further out, progressively allowing the methane to flow.  

Methane flow in coal seams is governed by two principles: Darcy’s Law and Fick’s Law. The latter deals with 

how the majority of methane in a coal bed starts its journey – diffusing out from the pores towards the 

fracture system where it more or less free flows towards the lower pressure area created by the well bore. 

From the moment the gas starts to flow freely, it is thought to behave in a way described by Darcy’s Law.  

Fick’s Law describes how one set of molecules moves past another set of molecules (Philibert, 2005; 

Zarrouk, 2008), much like how air inside a balloon moves through the ‘solid’ rubber encasement of the 

balloon wall. The air inside the balloon is under relatively higher pressure compared to the air outside the 

balloon and so the high pressure air diffuses (albeit slowly) through the balloon wall to the lower pressure air 

outside. The rapidity of how fast those air molecules move is a function of the pressure gradient, the pore 

surface area and the distance the molecules need to travel.  
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Once, however, the methane molecules reach a coal cleat, or fracture system, the character of the flow 

becomes quite different to diffusion, and Darcy’s Law is best used to describe that movement (Seidle, 2011). 

Similar to diffusion, the pressure gradient is important. Viscosity of the fluid (or gas) must also be taken  

into account. The resulting flow rate as derived through Darcy’s Law essentially describes permeability in  

a rock medium.  

It is permeability that usually determines if a coal seam gas play is commercial or not. Permeability in 

thermogenic coal seam gas is primarily determined by the number of cleats or fractures that a coal reservoir 

has and how open they are. Even very fine fractures are many times more permeable than the un-fractured 

coal: so they are effectively the ‘super highway’ of methane flow. In general, the higher the rank of the coal, 

the more frequent are the cleats/fractures, and thus the higher the permeability. But even within a single rank 

of coal there is a high degree of variability in cleat frequency depending on the coal type (Dawson & Esterle, 

2010). Coals with higher concentrations of the organic particle type termed ‘vitrinite’, tend to have more 

cleats/fractures and thus higher permeability (Ayers Jr., 2002; Smyth & Buckley, 1993). 

Biogenic coal seam gas is developed in coal that is too low in rank to develop cleat. In this case permeability 

is provided by original organic structure (i.e. leaf and woody tissue) that remains uncompressed enough in 

this low maturity material to provide original porosity and permeability for the passage of the gas.  

It is not enough to just have cleats and fractures in the coal reservoir to allow gas to flow. They have to be 

open and remain open. Because coal is quiet compressible, it is highly effected by stress, both vertical as 

well as horizontal applied stresses (Bell, 2006; Sparks et al., 1995). No matter how permeable a coal 

reservoir might be at, say, 300 m; with depth, permeability tends to fall off dramatically (Esterle et al., 2006; 

McCants et al., 2001) (Figure A1.3). There are very few commercial coal seam gas plays that are deeper 

than 1000 m – the permeability is practically non-existent. Permeability is also not static, it can and does 

change as the reservoir is de-watered and de-gassed; the effects of which can be detrimental to, or 

sometimes a boost for, gas flow. Finally, cleats and fractures may be closed as a result of horizontal stresses 

or mineralisation, most likely caused by tectonic compression, regardless of depth.  
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Figure A1.3 Coal bed permeability versus depth in a coal seam from the Permian age Bowen basin 

(Australia). Permeability has been spatially segregated into geological domains (i.e. geographic areas of 

similar geology and gas relationships) where ‘high’ and ‘low’ permeability have been identified. Note that the 

X axis is a log normal scale. See Esterle et al. (2006) for further explanation. 
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Appendix 2 

Hypothetical gas development scenario data 

 

  

Gas type Development 
Type 

Location/ Site Target  
Formation 

Target 
formation 
depth (m) 

Project area 
(km

2
) 

Tight/Shale (1) Prospect/field 
scale 

Trifon/North 
Seaspray/Gangell 
fields 

Strzelecki Group 1,400 8.6 

    Wombat field Strzelecki Group 1400 - 1800 18.1 

    Echidna prospect Strzelecki Group 1000-1500 10.8 

    Steele/Boundary Creek 
prospect 

Strzelecki Group 750-950 4.8 

    Carrs Creek prospect Strzelecki Group 1,600 5.7 

  (2) Sub-regional Seaspray Depression  Strzelecki Group 1000-1800 1132 

  (3) Regional Seaspray Depression + 
Latrobe Valley 

Strzelecki Group 1000-2700 5374 

Coal Seam 
Gas (brown 
coal) 

(1) Prospect/field 
scale 

Burong prospect Latrobe Group 692 8.4 

  (2) Sub-regional Seaspray Depression 
(restricted) 

Latrobe Group 400-800 438 

  (3) Regional Seaspray Depression 
(full T seam extent) 

Latrobe Group 200-1200 2793 
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